Problem Assignment # 2 10/03/2018due 10/10/2018

5. Equivalence relations

Consider a relation \sim on a set X as in ch. 1 §1.3 def. 1, but with the properties

- i) $x \sim x \quad \forall x \in X$ (reflexivity)
- ii) $x \sim y \Rightarrow y \sim x \quad \forall x, y \in X$ (symmetry)
- iii) $(x \sim y \land y \sim z) \Rightarrow x \sim z$ (transitivity)

Such a relation is called an *equivalence relation*. Which of the following are equivalence relations?

- a) n divides m on \mathbb{N} .
- b) $x \leq y$ on \mathbb{R} .
- c) g is perpendicular to h on the set of straight lines $\{g, h, \ldots\}$ in the cartesian plane.
- d) a equals b modulo n on \mathbb{Z} , with $n \in \mathbb{N}$ fixed.

hint: "a equals b modulo n", or $a = b \mod(n)$, with $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$, is defined to be true if a - b is divisible on \mathbb{Z} by n; i.e., if $(a - b)/n \in \mathbb{Z}$.

(3 points)

6. Bounds for n!

Prove by mathematical induction that

$$n^n/3^n < n! < n^n/2^n \quad \forall \ n \ge 6$$

hint: $(1+1/n)^n$ is a monotonically increasing function of n that approaches Euler's number e for $n \to \infty$.

(4 points)

7. All ducks are the same color

Find the flaw in the "proof" of the following

proposition: All ducks are the same color.

- proof: n = 1: There is only one duck, so there is only one color.
 - n = m: The set of ducks is one-to-one correspondent to $\{1, 2, ..., m\}$, and we assume that all m ducks are the same color.
 - n = m+1: Now we have $\{1, 2, ..., m, m+1\}$. Consider the subsets $\{1, 2, ..., m\}$ and $\{2, ..., m, m+1\}$. Each of these represent sets of m ducks, which are all the same color by the induction assumption. But this means that ducks #2 through m are all the same color, and ducks #1 and m+1 are the same color as, e.g., duck #2, and hence all ducks are the same color.

remark: This demonstration of the pitfalls of inductive reasoning is due to George Pólya (1888 - 1985), who used horses instead of ducks.

(2 points)... /over

8. Products

Prove the corollary to proposition 2 of ch.1 §2.2: If a is an element of a multiplicative group, and $n, m \in \mathbb{N}$, then

- a) $a^n a^m = a^{n+m}$
- b) $(a^n)^m = a^{nm}$

(2 points)