Problem Assignment # 3 10/10/2018due 10/17/2018

9. Pauli group

The Pauli matrices are complex 2×2 matrices defined as

$$\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad , \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Now consider the set P_1 that consists of the Pauli matrices and their products with the factors -1 and $\pm i$:

 $P_1 = \{\pm \sigma_0, \pm i\sigma_0, \pm \sigma_1, \pm i\sigma_1, \pm \sigma_2, \pm i\sigma_2, \pm \sigma_3, \pm i\sigma_3\}$

Show that this set of 16 elements forms a (nonabelian) group under matrix multiplication called the Pauli group. It plays an important role in quantum information theory.

10. The group S_3

- a) Compile the group table for the symmetric group S_3 . Is S_3 abelian?
- b) Find all subgroups of S_3 . Which of these are abelian?

(6 points)

(3 points)

11. Abelian groups

Let (G, \vee) be a group with neutral element e. Let $a \in G$ be a fixed element, and define a mapping $\varphi : G \to G$ by $\varphi(x) = a \vee x \vee a^{-1} \quad \forall x \in G$.

- a) Show that φ defines an automorphism on G, called an *inner automorphism*.
- b) Show that abelian groups have no inner automorphisms except for the identity mapping $\varphi(x) = x$.
- c) Let $g \lor g = e \forall g \in G$. Prove that G is abelian.

(6 points)

12. Fields

- a) Show that the set of rational numbers \mathbb{Q} forms a commutative field under the ordinary addition and multiplication of numbers.
- b) Consider a set F with two elements, $F = \{\theta, e\}$. On F, define an operation "plus" (+), about which we assume nothing but the defining properties

 $\theta + \theta = \theta$, $\theta + e = e + \theta = e$, $e + e = \theta$

Further, define a second operation "times" (\cdot) , about which we assume nothing but the defining properties

$$\theta \cdot \theta = e \cdot \theta = \theta \cdot e = \theta$$
 , $e \cdot e = e$

Show that with these definitions (and **no** additional assumptions), F is a field.

(7 points)