13. Function space

Consider the set C of continuous functions $f:[0,1] \rightarrow \mathbb{R}$. Show that by suitably defining an addition on C, and a multiplication with real numbers, one can make C an additive vector space over \mathbb{R}.

14. The space of rank-2 tensors

a) Prove the theorem of ch. $1 \S 4.3$: Let V be a vector space V of dimension n over K. Then the space of rank-2 tensors, defined via bilinear forms $f: V \times V \rightarrow K$, forms a vector space of dimension n^{2}.
b) Consider the space of bilinear forms f on V that is equivalent to the space of rank- 2 tensors, and construct a basis of that space.
hint: On the space of tensors, define a suitable addition and multiplication with scalars, and construct a basis of the resulting vector space.

15. Cross product of 3 -vectors

Let $x, y \in \mathbb{R}_{3}$ be vectors, and let $\epsilon_{i j k}$ be the Levi-Civita symbol. Show that the (covariant) components of the cross product $x \times y$ are given by

$$
(x \times y)_{i}=\epsilon_{i j k} x^{j} y^{k}
$$

(1 points)

16. Symmetric tensors

Let V be an n-dimensional vector space over K with some basis, let $f: V \times V \rightarrow K$ be a bilinear form, and let t be the rank-2 tensor defined by f. Show that f is symmetric, i.e. $f(x, y)=f(y, x) \forall x, y \in V$, if and only if the components of the tensor with respect to the given basis are symmetric, i.e., $t_{i j}=t_{j i}$.
(2 points)

