(3 points)

Problem Assignment # 5 10/24/2018due 10/31/2018

17. \mathbb{R} as a metric space

Consider the reals \mathbb{R} with $\rho : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $\rho(x, y) = |x - y|$. Show that this definition makes \mathbb{R} a metric space.

18. Limits of sequences

- a) Show that a sequence in a metric space has at most one limit.
 hint: Assume there are two limits, and use the triangle inequality to show that they must be the same.
- b) Show that every sequency with a limit is a Cauchy sequence.

19. Banach space

Prove Proposition 1 from §4.6, i.e., show that the norm on the dual space B^* of a Banach space B as defined in §4.6 def. 4 is a norm in the sense of the norm $|| \dots ||$ defined on B itself in §4.6 def. 1.

(3 points)

(3 points)

20. Hilbert space

- a) Show that the norm on a Hilbert space defined by §4.7 def. 1 is a norm in the sense of §4.6 def. 1.
 hint: Use the Cauchy-Schwarz inequality (§4.7 lemma).
- b) Show that the mappings ℓ defined in §4.7 def. 4 are linear forms in the sense of §4.3 def. 1(a).

(3 points)