21. Lorentz transformations in M_{2}

Consider the 2-dimensional Minkowski space M_{2} with metric $g_{i j}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and 2×2 matrix representations of the pseudo-orthogonal group $O(1,1)$ that leaves g invariant.
a) Let $\sigma, \tau= \pm 1$, and $\phi \in \mathbb{R}$. Show that any element of $O(1,1)$ can be written in the form

$$
D_{\sigma, \tau}(\phi)=\left(\begin{array}{ll}
1 & 0 \\
0 & \tau
\end{array}\right)\left(\begin{array}{cc}
\cosh \phi & \sinh \phi \\
\sinh \phi & \cosh \phi
\end{array}\right)\left(\begin{array}{cc}
\sigma & 0 \\
0 & 1
\end{array}\right)
$$

To study $O(1,1)$ it thus suffices to study the matrices $D(\phi):=D_{+1,+1}=\left(\begin{array}{cc}\cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi\end{array}\right)$.
b) Show explicitly that the set $\{D(\phi)\}$ forms a group under matrix multiplication (which is a subgroup of $O(1,1)$ that is sometimes denoted by $\left.S O^{+}(1,1)\right)$, and that the mapping $\phi \rightarrow D(\phi)$ defines an isomorphism between this group and the group of real numbers under addition.
c) Show that there exists a matrix J (called the generator of the subgroup) such that every $D(\phi)$ can be written in the form

$$
D(\phi)=e^{J \phi}
$$

and determine J explicitly.
(6 points)

22. Time-like and space-like intervals

Consider two points $\left(c t_{x}, x^{1}, x^{2}, x^{3}\right)$ and $\left(c t_{y}, y^{1}, y^{2}, y^{3}\right)$ in Minkowski space. The interval between the two points is called time-like if

$$
c^{2}\left(t_{x}-t_{y}\right)^{2}>\left(x^{1}-y^{1}\right)^{2}+\left(x^{2}-y^{2}\right)^{2}+\left(x^{3}-y^{3}\right)^{2},
$$

and space-like if

$$
c^{2}\left(t_{x}-t_{y}\right)^{2}<\left(x^{1}-y^{1}\right)^{2}+\left(x^{2}-y^{2}\right)^{2}+\left(x^{3}-y^{3}\right)^{2} .
$$

Show that in interval that is time-like or space-like in some inertial frame is also time-like or space-like in any other inertial frame. (This reflects the invariance of the speed of light.)

23. Special Lorentz transformations in M_{4}

Consider the Minkowski space M_{4}.
a) Show that the following transformations are Lorentz transformations:
i) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cc}1 & 0 \\ 0 & R^{i}{ }_{j}\end{array}\right) \equiv R^{\mu} \quad$ (rotations)
where $R^{i}{ }_{j}$ is any Euclidian orthogonal transformation.
ii) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}\cosh \alpha & \sinh \alpha & 0 & 0 \\ \sinh \alpha & \cosh \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \equiv B^{\mu}{ }_{\nu} \quad$ (Lorentz boost along the x-direction)
with $\alpha \in \mathbb{R}$.
iii) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \equiv P_{\nu}^{\mu} \quad$ (parity)
iv) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \equiv T_{\nu}^{\mu} \quad$ (time reversal)
b) Let L be the group of all Lorentz transformations. Show that the rotations defined in part a) i) are a subgroup of L, and so are the Lorentz boosts defined in part a) ii).
c) Let $I^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}$ be the identity transformation. Show that the sets $\{I, P\},\{I, T\}$, and $\{I, P, T, P T\}$ are subgroups of L.

24. General Lorentz transformations in M_{4}

Let D be a general Lorentz transformation in M_{4}.
a) Show that $\left|D_{0}^{0}\right| \geq 1$, and that $\left(D_{1}^{0}\right)^{2}+\left(D_{2}^{0}\right)^{2}+\left(D_{3}^{0}\right)^{2}=\left(D_{0}^{1}\right)^{2}+\left(D_{0}^{2}\right)^{2}+\left(D_{0}^{3}\right)^{2}$.
b) Let $L_{++}=\left\{D \in L\right.$; $\left.\operatorname{det} D>0, D_{0}^{0}>0\right\}$. (This is called the set of proper orthochronous Lorentz transformations, and one can show that it is a subgroup of L.) Show that any Lorentz transformation can be written as an element of L_{++}followed by either P, or T, or $P T$. It thus suffices to study L_{++}.
c) Show that any element of L_{++}can be written as a spatial rotation $R(\Phi, \Theta, \Psi)$ followed by a Lorentz boost $B(\alpha)$ followed by a rotation about the 3 -axes followed by a rotation about the 2 -axis. In a symbolic notation:

$$
D=\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}(\phi) R_{3}(\theta)
\end{array}\right) B(\alpha)\left(\begin{array}{cc}
1 & 0 \\
0 & R(\Phi, \Theta, \Psi)
\end{array}\right)
$$

L_{++}is thus characterized by six parameters: 3 Euler angles Φ, Θ, Ψ, the boost parameter α, and two additional rotation angles ϕ and θ.

