25. Transformations of tensor fields

a) Consider a covariant rank- n tensor field $t_{i_{1} \ldots i_{n}}(x)$ and find its transformation law under normal coordinate transformations that is analogous to $\S 5.1$ def.1; i.e., find how $\tilde{t}_{i_{1} \ldots i_{n}}(\tilde{x})$ is related to $t_{i_{1} \ldots i_{n}}(x)$.
b) Convince yourself that your result is consistent with the transformation properties of (i) a covector x_{i} (the case $n=1$), and (ii) the covariant components of the metric tensor $g_{i j}$.
(4 points)

26. Curl and divergence

Show that the curl and the divergence of a vector field transform as a pseudovector field and a scalar field, respectively.

27. Tensor products, and tensor traces

Prove Propositions 1 and 2 from ch. $1 \S 5.3$.
(4 points)

28. Lindhard function

Consider the function $f: \mathbb{C} \rightarrow \mathbb{C}$ (which plays an important role in the theory of many-electron systems) defined by

$$
f(z)=\log \left(\frac{z-1}{z+1}\right)
$$

The spectrum $f^{\prime \prime}: \mathbb{R} \rightarrow \mathbb{R}$ and the reactive part $f^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ of f are defined by

$$
f^{\prime \prime}(\omega):=\frac{1}{2 i}[f(\omega+i 0)-f(\omega-i 0)] \quad, \quad f^{\prime}(\omega):=\frac{1}{2}[f(\omega+i 0)+f(\omega-i 0)]
$$

a) Show that f^{\prime} and $f^{\prime \prime}$ are indeed real-valued functions.
b) Determine $f^{\prime \prime}$ and f^{\prime} explicitly, and plot them for $-3<\omega<3$.
c) Show that

$$
\int_{\infty}^{\infty} \frac{d \omega}{\pi} \frac{f^{\prime \prime}(\omega)}{\omega-z}=f(z)
$$

