29. Another causal function

The function considered in Problem 25. is an example of a class of complex functions called causal functions that are important for the theory of many-particle systems. Another member of this class is

$$
g(z)=\sqrt{z^{2}-1}-z
$$

Determine the spectrum and the reactive part of $g(z)$, and plot them for $-3<\omega<3$.

30. Exponentials

Consider the exponential function

$$
f(z)=e^{z}=e^{z^{\prime}+i z^{\prime \prime}}
$$

a) Show that $f(z)$ is analytic everywhere in \mathbb{C}.
b) Convince your self explicitly that the real and imaginary parts of f obey Laplace's differential equation.
c) Show that $d f /\left.d z\right|_{z}=f(z)$.
d) Show that $\cos z$ and $\sin z$, defined by

$$
\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \quad, \quad \sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)
$$

are analytic everywhere in \mathbb{C}, and that

$$
\frac{d}{d z} \cos z=-\sin z \quad, \quad \frac{d}{d z} \sin z=\cos z
$$

(4 points)

32. 1-d Fourier transforms

Consider a function f of one real variable x. Calculate the Fourier transforms of the following functions:
a) $f(x)=\left\{\begin{array}{ll}1 & \text { for }|x| \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.
b) $f(x)=\left\{\begin{array}{ll}1-|x| & \text { for }|x| \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.
c) $f(x)=e^{-\left(x / x_{0}\right)^{2}}$.

33. 3-d Fourier transforms

Consider a function f of one vector variable $\boldsymbol{x} \in \mathbb{R}^{3}$. The Fourier transform \hat{f} of f is defined as

$$
\hat{f}(\boldsymbol{k})=\int d \boldsymbol{x} e^{-i \boldsymbol{k} \cdot \boldsymbol{x}} f(\boldsymbol{x})
$$

Calculate the Fourier transforms of the following functions:
a)

$$
f(\boldsymbol{x})=\left\{\begin{array}{ll}
1 & \text { for } r<r_{0} \\
0 & \text { otherwise }
\end{array} \quad(r=|\boldsymbol{x}|)\right.
$$

b)

$$
f(\boldsymbol{x})=1 / r
$$

hint: Consider $g(\boldsymbol{x})=\frac{1}{r} e^{-r / r_{0}}$ and let $r_{0} \rightarrow \infty$.

