31. Applications of the residue theorem

Use complex analysis to evaluate the real integrals
a)

$$
\int_{-\infty}^{\infty} d x \frac{\sin x}{x}
$$

hint: Write $\sin x=\left(e^{i x}-e^{-i x}\right) / 2 i$ and consider the resulting two integrals with complex integrands. Why is this a good strategy?
b)

$$
\int_{-\infty}^{\infty} d x \frac{\sin x}{x} \frac{1}{1+x^{2}}
$$

and check your results by means of Wolfram Alpha.
Let $a \in \mathbb{C}$ with $\operatorname{Re} a>0$. Use the residue theorem to show that
c)

$$
\int_{-\infty}^{\infty} d x e^{-a x^{2}}=\sqrt{\pi / a}
$$

Now let $a \in \mathbb{R}$ and consider the integral
d)

$$
\int_{-\infty}^{\infty} \frac{d x}{x} \frac{1}{x^{2}+a^{2}}
$$

and define its Cauchy principal value by

$$
\lim _{R \rightarrow 0}\left[\int_{-\infty}^{-R} d x f(x)+\int_{R}^{\infty} d x f(x)\right]
$$

with $f(x)=1 / x\left(x^{2}+a^{2}\right)$. Determine the Cauchy principal value using the residue theorem. Is the result consistent with the expectation for a real symmetric integral over an antisymmetric integrand?
hint: Go around the pole on a semicircle of radius R and let $R \rightarrow 0$.

34. More 1-d Fourier transforms

Consider a function of time $f(t)$ and define its Fourier transform

$$
\hat{f}(\omega):=\int d t e^{i \omega t} f(t)
$$

and its Laplace transform $F(z)$ as

$$
F(z)= \pm i \int d t e^{i z t} f_{ \pm}(t) \quad(\pm \text { for } \operatorname{sgn}(\operatorname{Im} z)= \pm 1)
$$

with z a complex frequency and $f_{ \pm}(t)=\Theta(\pm t) f(t)$. Further define

$$
F^{\prime \prime}(\omega)=\frac{1}{2 i}[F(\omega+i 0)-F(\omega-i 0)] \quad, \quad F^{\prime}(\omega)=\frac{1}{2}[F(\omega+i 0)+F(\omega-i 0)]
$$

Calculate $F^{\prime \prime}(\omega)$ and $F^{\prime}(\omega)$ for
a) $f(t)=e^{-|t| / \tau}$
b) $f(t)=e^{i \omega_{0} t}$
hint: $\lim _{\epsilon \rightarrow 0} \epsilon /\left(x^{2}+\epsilon^{2}\right)=\pi \delta(x)$, with $\delta(x)$ the familiar Dirac delta-function, which we will study in detail in Week 10.
Show that in both cases $\int \frac{d \omega}{\pi} \frac{F^{\prime \prime}(\omega)}{\omega}=F^{\prime}(\omega=0)$.
note: These concepts are important for the theory of response functions.
(4 points)

35. Regularizations of the constant function, and of the sign function

Prove the following statements from PHYS 610 §3.4:
a) The sequence $f_{n}(x)=e^{-x^{2} / n^{2}}$ is a regular sequence of test functions that is a regularization of the generalized function $f(x) \equiv 1$.
b) The sequence $f_{n}(x)=\tanh (n x)$ is a regularization of the generalized function $f(x)=\operatorname{sgn} x$.

36. Distribution limits

a) Show that the sequences

$$
f_{n}(x)=\frac{1}{\pi x} \sin (n x) \quad(n=1,2, \ldots)
$$

and

$$
g_{n}(x)=\frac{1}{\pi n} \frac{1}{x^{2}+1 / n^{2}} \quad(n=1,2, \ldots)
$$

yield the δ-function as $n \rightarrow \infty$ in a distribution-limit sense:

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} g_{n}(x)=\delta(x)
$$

b) Show that

$$
\frac{d}{d x} \operatorname{sgn} x=2 \delta(x)
$$

and

$$
\frac{d}{d x} \Theta(x)=\delta(x)
$$

with $\Theta(x)$ the step function.
c) Show that

$$
\lim _{\epsilon \rightarrow 0} \epsilon|x|^{\epsilon-1}=2 \delta(x)
$$

hint: Start with ch. 3 §2.4 example 6 and differentiate.

