1. Dual field tensor

Show that the dual field tensor $\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\lambda\kappa} F_{\lambda\kappa}$ obeys

$$\partial_{\mu}\tilde{F}^{\mu\nu}(x) = 0 \tag{2 points}$$

2. Functional derivative

Let $F[\varphi]$ be a functional of a real-valued function $\varphi(x)$. For simplicity, let $x \in \mathbb{R}$; the generalization to more than one dimension is straightforward. We can (sloppily) define the functional derivative of F as

$$\frac{\delta F}{\delta \varphi(x)} := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(F[\varphi(y) + \epsilon \delta(y-x)] - F[\varphi(y)] \right)$$

- a) Calculate $\delta F/\delta \varphi(x)$ for the following functionals:
 - i) $F = \int dx \varphi(x)$
 - ii) $F = \int dx \, \varphi^2(x)$
 - iii) $F = \int dx (\varphi'(x))^2$ where $\varphi'(x) = d\varphi/dx$

hint: Integrate by parts and assume that the boundary terms vanish.

iv) $F = \int dx V(\varphi'(x))$ where V is some given function.

remark: Blindly ignore terms that formally vanish as $\epsilon \to 0$ unless you want to find out why the above definition is problematic. It does work for operational purposes, though.

b) Consider a "Lagrangian" $\mathcal{L}(\varphi(x), \partial_{\mu}\varphi(x))$ (i.e., a function of φ and its derivatives) and an "action" $S = \int d^4x \,\mathcal{L}$. Show that extremizing S by requiring $\delta S/\delta\varphi(x) \equiv 0$ with the above definition of the functional derivative leads to the Euler-Lagrange equations

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \varphi)} = \frac{\partial \mathcal{L}}{\partial \varphi}$$
 (3 points)

3. Massive scalar field

a) Consider a Lagrangian density

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \varphi(x) \right) \left(\partial^{\mu} \varphi(x) \right) - \frac{m^2}{2} \left(\varphi(x) \right)^2$$

for a real scalar field $\varphi(x)$. Find the Euler-Lagrange equation for the field φ by requiring $\delta S/\delta \phi(x) = 0$.

b) Generalize this Lagrangian density to a complex field $\phi(x) \in \mathbb{C}$:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi(x) \right) \left(\partial^{\mu} \phi^{*}(x) \right) - \frac{m^{2}}{2} \left| \phi(x) \right|^{2}$$

What are the Euler-Lagrange equations now?

c) Consider a local gauge transformation, $\phi(x) \to \phi(x) e^{i\Lambda(x)}$, with $\Lambda(x)$ a real field that characterizes the transformation. Is the Lagrangian from part b) invariant under such a transformation?

(3 points)

.../over

4. Ginzburg-Landau theory

Ginzburg and Landau postulated that superconductivity can be described by an action (which is NOT Lorentz invariant)

$$S_{\mathrm{GL}} = \int dm{x} \Big[r \left| \phi(m{x}) \right|^2 + c \left| \left[\nabla - iqm{A}(m{x}) \right] \phi(m{x}) \right|^2 + u \left| \phi(m{x}) \right|^4 + rac{1}{16\pi\mu} F_{ij}(m{x}) F^{ij}(m{x}) \Big]$$

Here $\mathbf{x} \in \mathbb{R}^3$, $\phi(\mathbf{x})$ is a complex-valued field that describes the superconducting matter, \mathbf{A} is the Euclidean vector field that comprises the spatial components of the 4-vector $A^{\mu} = (A^0, \mathbf{A})$, and $F_{ij} = \partial_i A_j - \partial_j A_i$ (i, j = 1, 2, 3). μ and q are coupling constants that characterize the vector potential and its coupling to the matter, and r, c and u are further parameters of the theory.

- a) Find the coupled differential equations (known as Ginzburg-Landau equations) whose solutions extremize this action by considering the functional derivatives of $S_{\rm GL}$ with respect to all independent fields. (You may want to double check against what you get from the Landau-Lifshitz method we used in class.)
- b) Show that this theory is invariant under gauge transformations $\phi(x) \to \phi(x) e^{iq\lambda(x)}$, $A(x) \to A(x) + \nabla \lambda(x)$.
- c) Show that the Lorentz-invariant Lagrangian density for a massive scalar field, Problem 3b), can be made gauge invariant by coupling $\phi(x)$ to the electromagnetic vector potential $A^{\mu}(x)$.

hint: Replace the 4-gradient ∂_{μ} by $D_{\mu} = \partial_{\mu} - iqA_{\mu}$ and add the Maxwell Lagrangian.

note: If we had never heard of the electromagnetic potential, insisting on gauge invariance would force us to invent it!

(7 points)