9. Particle in homogeneous E and B fields

Consider a point particle (mass m, charge e) in homogeneous fields $\boldsymbol{B}=(0,0, B)$ and $\boldsymbol{E}=\left(0, E_{y}, E_{z}\right)$. Treat the motion of the particle nonrelativistically.
a) Show that the motion in z-direction decouples from the motion in the $x-y$ plane, and find $z(t)$.
b) Consider $\xi:=x+i y$. Find the equation of motion for ξ, and its most general solution.
hint: Define the cyclotron frequency $\omega=e B / m c$, and remember how to solve inhomogeneous ODEs.
c) Show that the time-averaged velocity perpendicular to the plane defined by \boldsymbol{B} and \boldsymbol{E} is given by the drift velocity

$$
\langle\boldsymbol{v}\rangle=c \boldsymbol{E} \times \boldsymbol{B} / \boldsymbol{B}^{2}
$$

Show that $E_{y} / B \ll 1$ is necessary and sufficient for the non relativistic approximation to be valid.
d) Show that the path projected onto the $x-y$ plane can have three qualitatively different shapes, and plot a representative example for each.

10. Harmonic oscillator coupled to a magnetic field

Consider a charged 3-d classical harmonic oscillator (oscillator frequency ω_{0}, charge e). Put the oscillator in a homogeneous time-independent magnetic field $\boldsymbol{B}=(0,0, B)$. Show that the motion remains oscillatory, and find the oscillation frequencies in the directions parallel and perpendicular, respectively, to \boldsymbol{B}.
(4 points)

11. Relativistic motion in parallel electric and magnetic fields

Consider a relativistic charged particle (mass m, charge e) in parallel homogeneous electric and magnetic fields $\boldsymbol{E}=(0,0, E), \boldsymbol{B}=(0,0, B)$.
a) Show that the equation of motion for the z-component of the momentum p_{z} decouples from p_{x} and p_{y}, and that the momentum perpendicular to the z-axis is a constant of motion: $p_{x}^{2}+p_{y}^{2} \equiv p_{\perp}^{2}=$ const.
b) Choose the zero of time such that $p_{z}(t=0)=0$, and show that with a suitable chosen origin the z-component of the particle's position can be written

$$
z(t)=\frac{1}{e E} \sqrt{T_{0}^{2}+c^{2} e^{2} E^{2} t^{2}}
$$

where T_{0} is the kinetic energy (i.e., the energy of the particle without the potential energy due to the fields) at time $t=0$.
hint: If you have trouble, recall Einstein's law of falling bodies from PHYS 611. You can find my version at http://pages.uoregon.edu/dbelitz/teaching/2013_14/PHYS_611-4/, Assignment \# 5, Problem 21.
c) Introduce a parameter φ via $d \varphi / d t=c e B / T(t)$, with $T(t)$ the time-dependent kinetic energy. Show that the orbit of the particle can be represented in the parametric form

$$
x=\frac{c p_{\perp}}{e B} \sin \varphi \quad, \quad y=\frac{c p_{\perp}}{e B} \cos \varphi \quad, \quad z=\frac{T_{0}}{e E} \cosh (E \varphi / B)
$$

and explicitly find the relation between φ and t.
hint: Consider $\pi:=p_{x}+i p_{y}$ and note that $|\pi|=p_{\perp}=$ const. by the result of part a).
d) Describe and visualize the orbit, and discuss the motion in the limits of large and small times.

