16. Planar charge distributions

a) Consider a homogeneously charged infinitesimally thin ring with radius R and total charge Q that is oriented perpendicular to the z-axis. Calculate the electric field
 on the z-axis.
b) The same for a homogeneously charged disk with charge density σ and radius R. Consider the limits $z \rightarrow \infty, z \rightarrow 0$, and $R \rightarrow \infty$, and ascertain that they makes sense.

(4 points)

17. Spherically symmetric charge distributions

Consider a spherically symmetric static charge distribution (in spherical coordinates): $\rho(\boldsymbol{x})=\rho(r)$.
a) Express the electric field in terms of a one-dimensional integral over $\rho(r)$, and the electrostatic potential by a one-dimensional integral over the field.
hint: Make an ansatz for a purely radial field, $\boldsymbol{E}(\boldsymbol{x})=E(r) \hat{e}_{r}$, and integrate Gauss's law over a spherical volume.

Explicitly calculate and plot the field $\boldsymbol{E}(\boldsymbol{x})$ and the potential $\varphi(\boldsymbol{x})$ for
b) a homogeneously charged sphere

$$
\rho(\boldsymbol{x})= \begin{cases}\rho_{0} & \text { if } r \leq r_{0} \\ 0 & \text { if } r>r_{0}\end{cases}
$$

c) a homogeneously charged spherical shell

$$
\rho(\boldsymbol{x})=\sigma_{0} \delta\left(r-r_{0}\right)
$$

18. Electrostatics in d dimensions (to be continued next week)

Consider the third Maxwell equation in d dimensions:

$$
\nabla \cdot \boldsymbol{E}(\boldsymbol{x})=S_{d} \rho(\boldsymbol{x})
$$

with the electric field \boldsymbol{E} a d-vector, and S_{d} the area of the $(d-1)$-sphere: $S_{2 n}=2 \pi^{n} /(n-1)$! and $S_{2 n+1}=$ $2^{2 n+1} n!\pi^{n} /(2 n)!$ for even and odd dimensions, respectively. Define a scalar potential $\varphi(\boldsymbol{x})$ in analogy to the $3-d$ case, such that

$$
\boldsymbol{E}(\boldsymbol{x})=-\boldsymbol{\nabla} \varphi(\boldsymbol{x})
$$

and consider Poisson's equation

$$
\boldsymbol{\nabla}^{2} \varphi(\boldsymbol{x})=-S_{d} \rho(\boldsymbol{x})
$$

note: Here we consider a generalization of electrostatics to d-dimensional space, NOT a d-dimensional charge distribution embedded in 3-dimensional space.
a) Show that the Green function $G_{d}(\boldsymbol{x})$ function for Poisson's equation, i.e., the solution of

$$
\boldsymbol{\nabla}^{2} G_{d}(\boldsymbol{x})=-S_{d} \delta(\boldsymbol{x})
$$

is given by

$$
G_{d}(\boldsymbol{x})=\frac{1}{d-2} \frac{1}{|\boldsymbol{x}|^{d-2}}
$$

for all $d \neq 2$, and by

$$
G_{2}(\boldsymbol{x})=\ln (1 /|\boldsymbol{x}|)
$$

for $d=2$.
hint: For $d=1$, differentiate directly, using PHYS 610 Problem 36 b$)$. For $d \geq 2$, show that $G_{d}(\boldsymbol{x})$ is a harmonic function for all $\boldsymbol{x} \neq 0$, then integrate $\boldsymbol{\nabla}^{2} G_{d}$ over a hypersphere around the origin and use Gauss's law.

