37. Potentials in Coulomb gauge

Consider the potentials φ and \boldsymbol{A} in the Coulomb gauge, i.e., the field equations from ch. $4 \S 1.2$ proposition 2. Show explicitly that the resulting asymptotic electric and magnetic fields are the same as those calculated in the Lorenz gauge in ch. $4 \S 3$.
hint: Show that the scalar potential does not contribute to the electric field, and show that the asymptotic vector potential now reads

$$
\boldsymbol{A}(\boldsymbol{x}, t)=-\hat{\boldsymbol{x}} \times\left[\hat{\boldsymbol{x}} \times \frac{1}{r c} \int d \boldsymbol{y} \boldsymbol{j}\left(\boldsymbol{y}, t_{r}\right)\right]
$$

instead of the expression derived in ch. $4 \S 3.1$. Then calculate the fields.
(8 points)

38. Radiation from cyclotron motion

Consider a point mass m with charge e that moves in a plane perpendicular to a homogeneous magnetic field \boldsymbol{B}. Assume nonrelativistic motion, $v \ll c$
a) Find the power radiated by the particle.
b) Show that the energy of the particle decreases with time according to $E(t)=E_{0} e^{-t / \tau}$, and determine the timescale τ.
c) Find τ in seconds for an electron in a magnetic field of 1 Tesla.

39. Radiating harmonic oscilator

Consider particle with charge e and mass m in a one-dimensional harmonic potential. Let the frequency of the harmonic oscillator by ω_{0}.
a) Find the power radiated by the particle, averaged over one oscillation period, as a function of the energy E of the oscillator.
hint: Remember the virial theorem, which for a harmonic potential says $\bar{V}=\bar{T}=E / 2$, with V, T, and E the potential, kinetic, and total energy, respectively, of the particle, and the bar denoting a time average.
b) Show that the energy of the oscillator again decreases exponentially, $E(t)=E_{0} e^{-t / \tau}$.
c) Determine τ in seconds for e and m the electron charge and mass, respectively, and $\omega_{0}=10^{15} \sec ^{-1}$ (a typical atomic frequency).

41. Absence of dipole radiation

Show that a system of particles that all have to the same ratio of charge to mass and are not subject to any external forces cannot emit either electric or magnetic dipole radiation.

