18. Electrostatics in d dimensions (continued from last week)

Consider Problem \#18 as set up in Problem Assignment \#5.
b) Calculate and plot the potential φ and the field \boldsymbol{E} for $d=2$ for the case of a homogeneously charged disk, $\rho(\boldsymbol{x})=\rho_{0} \Theta\left(r_{0}-|\boldsymbol{x}|\right)$.
hint: It is easiest to proceed as in the $3-d$ case, see Problem 17.
note: This problem plays an important role in the theory of the Kosterlitz-Thouless transition, for which part of the 2016 Nobel prize in Physics was awarded.
c) The same for $d=1$ for the case of a uniformly charged rod, $\rho(x)=\rho_{0} \Theta\left(x_{0}^{2} / 4-x^{2}\right)$. hint: Integrate Poisson's formula directly.

19. Helmholtz equation

Find the most general Fourier transformable solution of the Helmholtz equation

$$
\left(\kappa^{2}-\boldsymbol{\nabla}^{2}\right) \varphi(\boldsymbol{x})=4 \pi \rho(\boldsymbol{x})
$$

in terms of an integral.
hint: The answer is a generalization of Poisson's formula.
(3 points)

20. Quadrupole moments

a) Consider a localized charge density as in ch. $2 \S 3.1$ and carry the expansion of the potential to $O\left(1 / r^{3}\right)$. Show that the potential to that order is given by

$$
\varphi(\boldsymbol{x})=\frac{1}{r} Q+\frac{1}{r^{3}} \boldsymbol{x} \cdot \boldsymbol{d}+\frac{1}{r^{5}} \sum_{i, j} x_{i} x_{j} Q_{i j}+\ldots
$$

with Q the total charge and \boldsymbol{d} the dipole moment, and determine the quadrupole tensor $Q_{i j}$.
b) Show that the quadrupole tensor is independent of the choice of the origin provided the total charge and the dipole moment vanish.
c) Consider a homogeneously charged ellipsoid $(x / a)^{2}+(y / b)^{2}+(z / c)^{2} \leq 1$ and calculate the quadrupole tensor $Q_{i j}$ with respect to the ellipsoid's center. Check to make sure that the result for $Q_{i j}$ is traceless.
d) Let the charge density be invariant under rotations about the z-axis through multiples of an angle α, with $|\alpha|<\pi$. Show that in this case the quadrupole tensor has the form $\left(\begin{array}{ccc}q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & -2 q\end{array}\right)$. Make sure your result from part c) conforms with this for the special case $a=b$.
e) Consider the homogeneously charged ellipsoid from Problem 20 c), and calculate the quadrupole moments $Q_{2 m}$ as defined in ch. $2 \S 3.5$.
18. c) Waride $\vec{\nabla}^{2} G_{\alpha}(\vec{x})=-S_{\alpha} \delta(\vec{x})$
vill S_{2} the morfore one of the (d-1)-spher.
propisitio: $G_{d}(\bar{x})=\frac{1}{d-2} \frac{1}{|\bar{x}|^{d-2}}$ for $d \neq 2$

$$
G_{d}|\bar{x}|=m_{1}(1 /|\bar{x}|) \text { for } d=2
$$

pwol' $d=1$ If siruct diffatielix 610 Proben 36b)
\bigcirc
(1)

$$
\begin{aligned}
& \left.\frac{d^{2}}{d x^{2}}(-)|x|=-\frac{d}{d x} \right\rvert\, p x=-2 \delta(x) \\
& \rightarrow=\frac{d^{2}}{d x^{2}} G_{d=1}(x)=\frac{d^{2}}{d x^{2}}(-)|x|=-2 \delta(x)= \\
& =
\end{aligned}
$$

$$
\rightarrow \vec{\nabla}^{2} \operatorname{ly}^{\prime}|\stackrel{\rightharpoonup}{x}|=\partial_{i} \partial^{i} \log _{y}|\vec{x}|=(2-2) \frac{1}{r^{2}}=0 \quad \forall r \neq 0
$$

0
(1)
$\rightarrow \log _{\mathrm{g}}|\vec{x}|$ is a Lemounic fet. $\forall \vec{x} \neq 0$
Now ingroh wor a circh C_{0} redica r_{0} :

$$
\begin{aligned}
& \iint_{C_{0}} d^{2} x \vec{\nabla}^{2} l_{y}|\vec{x}|=\iint_{C_{0}^{\prime}} d^{2} x \vec{\nabla} \cdot\left(\vec{\nabla} \log _{1} r\right) \stackrel{6 a r d t}{\stackrel{y}{=}} \int_{\left(C_{0}\right)} d \vec{\sigma} \cdot \vec{\nabla} \log r \\
& =\left.\int_{0}^{r o} d \varphi r_{0} \frac{\vec{x}}{r} \cdot \frac{\vec{x}}{r^{2}}\right|_{r_{0}}=2 \bar{\sigma} \\
& \rightarrow \vec{\nabla}^{\prime} l_{j}|\vec{x}|=\tau_{\bar{v}} \delta(\bar{x})=S_{d=2}^{\prime} \delta(\bar{x}) \\
& \rightarrow \quad G_{d=2}(\vec{x})=-\log _{y}|\vec{x}|=\log _{J}(1| | \vec{x} \mid)
\end{aligned}
$$

$d>2=$

$$
\begin{aligned}
& \partial_{i} \partial_{j} \frac{1}{|\vec{x}|^{\alpha-2}}=-\frac{d-2}{\chi} \partial_{i} \frac{\lambda x_{j}}{|\vec{x}|^{\alpha}}=-(d-2)\left(\frac{\delta_{i j}}{|\dot{x}|^{\|} \|_{i}}-\frac{d}{\lambda} \frac{\lambda x_{i} x_{j}}{|\bar{x}|^{\mid d-2) \mid}}\right. \\
& =-(\alpha-2) \stackrel{r^{2} \delta_{i j}}{{ }_{r} \frac{-d x_{i} x_{j}}{(d+2) / 2}} \\
& \rightarrow \vec{\nabla}^{2} \frac{1}{|\vec{x}|^{(-2}}=-(\alpha-2)(\alpha-d) \frac{1}{r^{(\alpha-1) / 2}}=0 \quad \forall r \neq 0
\end{aligned}
$$

Wharah ave a ligprophens, vile rodies r_{0} :

$$
\begin{aligned}
& \int_{S_{0}} d^{\prime} x \vec{\nabla}^{2} \frac{1}{|\vec{x}|^{\alpha-2}}=\int_{\left(r_{0}\right)} d \vec{\sigma} \cdot \stackrel{\rightharpoonup}{\nabla} \frac{1}{|\vec{x}|^{\alpha-2}}=S_{d}^{\prime} r_{0}^{\alpha-i}(-)(d-2) \frac{\vec{x}}{r} \cdot \frac{\vec{x}}{r^{2}} \\
& =-(d-2), S_{\alpha}^{\prime} \\
& \rightarrow \quad \vec{D}^{2} \frac{1}{|\vec{x}|^{d-2}}=-(\alpha-2) S_{\alpha} \delta(\bar{x}) \\
& \leadsto \underline{G_{d r 2}(\bar{x})}=\frac{1}{d-2} \frac{1}{|\vec{x}|^{d-2}}
\end{aligned}
$$

b) It is eeriest to stert vile the friel. Genss's lou i i-d

$$
\vec{\nabla} \cdot \vec{E}(\bar{x})=15 g(\bar{x})
$$

cel promedijas $\dot{\sim}$ Probeh 17 or Lar

$$
\operatorname{i\sigma r} E(r)=2 \bar{\sigma} \cdot 2 \bar{\sigma} \int_{0}^{r} d r^{\prime} r^{\prime} \rho\left(r^{\prime}\right)
$$

for a leys dishibalie $g(\bar{x})=g(r)$ el $\vec{E}(\bar{x})=E(r) \hat{e}_{r}$.

$$
\rightarrow \quad E(r)=\frac{25}{r} \int_{0}^{r} d r^{\prime} r^{\prime} g\left(r^{\prime}\right)
$$

Nomoproust loyel dist: $\quad \rho(r)=\operatorname{so} \theta\left(r_{0}-r\right)$
p^{18-3}

$=\operatorname{EQ}_{r_{0} Q^{2}}$ vile $Q=\sigma r_{0}^{\prime} \rho_{0}$ fold derp

$$
2^{i l} \text { cen : } r>r_{0} \quad E(r)=\frac{i \sigma}{r} \rho_{0} \frac{1}{2} r_{0}^{2}=\underline{Q} r
$$

$$
\rightarrow \begin{aligned}
& \vec{E}(\bar{x})=E(r) \hat{e}_{r} \\
& E(r)= \begin{cases}Q_{r} / r_{0}{ }^{2} & \text { for } r<r_{0} \\
Q / r & \text { for } r>r_{0}\end{cases}
\end{aligned}
$$

Fidelfels off ang es $1 / r$, as uppond $h a / r^{2} \sim d o c!$
Nou the polatil: $\quad \vec{E}(\bar{x})=-\vec{\nabla} \varphi(\bar{x})=-\partial_{r} \varphi(r) \hat{e}_{r}$

$$
\begin{aligned}
& \rightarrow E(r)=-\partial_{r} \varphi(r) \\
& \rightarrow \varphi(r)=-\int_{\cos t}^{r} d r^{\prime} E\left(r^{\prime}\right)
\end{aligned}
$$

\bigcirc
$\Rightarrow \varphi\left(n=-\int_{r_{0}}^{\stackrel{Y}{r} d r^{\prime} E\left(r^{\prime}\right) \quad \text { vile the trin } \varphi\left(r=r_{0}\right)=0}\right.$

$$
2^{2 d} \text { con : } r>r_{0} \quad \underline{\varphi}(r)=\int_{r_{0}}^{r} d r^{\prime} \frac{Q}{r^{\prime}}=Q d y\left(r \mid r_{0}\right)
$$

$+\frac{1}{\text { har slutiches }}$

$$
\mathcal{1}^{\text {dt } c o n: ~} \underline{r<r_{0} \quad \underline{\varphi} \quad-r \int_{r}^{r_{0}} d r^{\prime} \frac{Q_{r}^{\prime}}{r_{0}^{2}}=-\frac{Q}{2 r_{0}^{2}}\left(r_{0}^{2}-r_{i}^{2}\right)=\frac{Q Q}{2}\left(\frac{r_{2}^{2}}{r_{0}^{2}-1}\right) .}
$$

c) In $1-2$ it is corniest to ingrel Prise's found directly:

$$
\begin{aligned}
\underline{\varphi(x)} & =\int d y G_{d=1}(x-y) \rho(y)=-\int d y|x-y| \rho_{0} \theta\left(x_{0}^{2} / 4-y y^{2}\right) \\
& =-\rho_{0} \int_{-x_{0} / 2}^{x_{0} / 2} d x-y \mid=\varphi(-x)
\end{aligned}
$$

Let $x \geqslant 0$.

$$
\begin{aligned}
& =-\rho_{0}\left[x\left(x^{\frac{x}{2}} \frac{x_{0}^{2}}{2}-\frac{11}{2}\left(x^{2}-\frac{1}{4} x_{0}^{2}\right)\right]+\rho_{0}\left[x\left(\frac{x_{2}^{2}}{2}-x\right)-\frac{1}{2}\left(\frac{x_{0}^{2}}{4}-x^{2}\right)\right]\right. \\
& =-\rho_{0}\left(x^{2}+\frac{1}{4} x_{0}^{2}\right)=
\end{aligned}
$$

Zn con: $\underline{2^{2 d} \text { con }} \quad \underline{\varphi}(x)=-\rho_{0} \int_{-x_{0} / 2}^{x_{0} / 2} d y(x-j)=-\rho_{0} x_{0} x_{0}=-\rho_{0}^{0} x_{0} x$
$=-Q x$ vile $Q=j_{0} x_{0}$ total long

$$
\varphi(x)=-Q x_{0} \times \begin{cases}\frac{x^{1}}{x_{0}^{2}}+\frac{1}{4} & \text { for }|x|<x_{0} \mid< \\ |x| / x_{0} & \text { for }|x|>x_{0} / 2\end{cases}
$$

Now the fid.

$$
E(x)=-\partial_{x} \varphi(x)=
$$

$$
E(x)=Q= \begin{cases}2 x \mid x_{0} & \text { for }|x|<x_{0} / 2 \\ 3 \rho x & \text { for }|x|>x_{0} / 2\end{cases}
$$

$$
p-19
$$

19.) Elunholt ip: $\left(\vec{r}^{2}-\vec{\nabla}^{2}\right) \varphi(\vec{x})=4 g g(\vec{x})$

Toumir bofo as i ll ${ }^{2} 2$
(1)

$$
\begin{aligned}
& \left(\vec{l}^{2}+\vec{r}^{2}\right) \hat{\varphi}(\vec{l})=45 \hat{g}(\vec{r}) \\
& \Rightarrow \hat{\varphi}(\vec{r})=\frac{4 \sigma}{1 r^{2}+\vec{l}^{2}} \hat{j}(\vec{r}) \\
& \Rightarrow \varphi(\vec{x})=\int \frac{d \vec{r}}{(r)^{2}} e^{i \vec{l} \vec{x}} \frac{4 \sigma}{1 R^{2}+\vec{r}^{2}} \hat{\jmath}(\vec{r}) \\
& =\int d \vec{y} v_{s c}(\vec{x}-\vec{y}) f(\vec{y}) \quad \text { by Un wowherlie thenen, } \\
& \text { P4ys } 610 \text { UL } 57.1
\end{aligned}
$$

(1)
when. $v_{\text {se }}(\bar{x})$ is the tornnir boch befo of Un scranel conguns poluciel

$$
\hat{v}_{1 c}(\tilde{r})=\frac{4 \pi}{R^{1}+\vec{l}^{2}}
$$

\bigcirc
610 Probe $27 b) \rightarrow \quad v_{1 c}\left(\vec{x} \left\lvert\,=\frac{1}{r} e^{-12 r}\right.\right.$ vill $r=|\vec{x}|$

$$
\rightarrow \quad \varphi(\vec{x})=\int d \vec{y} \frac{e^{-|2| \vec{x}-\vec{j} \mid}}{|\vec{x}-\vec{y}|} f(\vec{y})
$$

tar $12=0$ ve recurs Poisicun's forme

$$
\begin{aligned}
& p-20^{-1}-1 \\
& \text { 20.) } 01 \frac{1}{|\vec{x}-\vec{j}|}=\frac{1}{r}\left(1-2 \frac{\vec{x} \cdot \vec{r}}{r^{2}}+\frac{y^{2}}{r^{2}}\right)^{-1 / L}=\frac{1}{r}\left(1+\frac{\vec{x} \cdot \vec{a}}{r^{2}}-\frac{1}{2} \frac{y^{2}}{r^{2}}+\frac{3}{2} \frac{(\vec{x} \cdot \overrightarrow{3})^{2}}{r^{4}}+\ldots\right) \\
& =\frac{1}{r}\left[1+\frac{\vec{x} \cdot \vec{J}}{r^{2}}+\frac{]}{2} x_{i} x_{j} y_{i j} j \frac{1}{r^{4}}-\frac{1}{2} j^{2} \delta_{i j} x_{i} x_{j} \frac{1}{r^{4}}+\cdots\right] \\
& \left.=\frac{1}{r}\left[1+\frac{\vec{x}_{\cdot}{ }^{2}}{r^{2}}+\frac{1}{2} x_{i} x_{j}\left(z_{j i} j_{j}-\delta_{i j}\right)^{2}\right) \frac{1}{r^{4}}+\cdots\right] \\
& \rightarrow \underline{\underline{\varphi(\vec{x}})}=\int d \vec{y} \frac{\rho(\vec{y})}{|\vec{x}-\vec{j}|}=\frac{1}{r} \int d \vec{j} f(\vec{y})+\frac{1}{r^{3}} \vec{x} \cdot \int d \vec{y} \vec{J} \int(\vec{y}) \\
& +\frac{1}{2} \frac{1}{r^{5}} x_{i} x_{j} \int d j\left(3 y_{i j}-\delta_{i j} j^{2}\right) g(j)+\cdots \\
& =\frac{1}{r} Q+\frac{1}{r^{3}} \vec{x} \cdot \vec{d}+\frac{1}{r^{5}} \sum_{i, j} x_{i} x_{j} Q_{i j}+O\left(1 / r^{4}\right)
\end{aligned}
$$

Whe $Q=\int d \vec{J} g(\vec{J})$ monopole mout
$\vec{d}=\int d \vec{y} \vec{y} f(\vec{y})$ diple mont

$$
Q_{i j}=\frac{1}{i} \int d j^{3}\left(\partial y_{i j j}-\delta_{i j} j^{2}\right) j(j) \text { giadmpole mant }
$$

b)

$$
\begin{aligned}
& f^{\prime}(\vec{s})=\rho(\vec{y}-\bar{a}) \\
& \left.\leadsto Q_{i j}^{\prime}=\frac{1}{2} \int d_{j}^{\prime}\left(J_{i j} j_{j}-\delta_{i j}\right)^{2}\right) g^{\prime}(\bar{y}) \\
& =\frac{1}{2} \operatorname{ddj} \tilde{j}\left[J\left(j_{i}+a_{i}\right)\left(j_{j}+0_{j}\right)-\delta_{i j}(\vec{y}+\bar{a})^{2}\right] f(\vec{y}) \\
& =Q_{i j}+\frac{1}{2} \int d j\left[J e_{i} y_{j}+I a_{j} j_{i}+\lambda c_{i j}-\delta_{i j}(2 \vec{a} \cdot \vec{j}+\vec{a})\right] \rho_{j} \\
& =Q_{i j}+\frac{3}{2} a_{i} d_{j}+\frac{3}{2} a_{j} d_{i}+\frac{1}{2} a_{i} a_{j} Q-\delta_{i j} \vec{C} \cdot \vec{d}-\delta_{i j} i^{2} \vec{a}^{2} Q \\
& =Q_{i j} \text { if } \quad \vec{d}=Q=0
\end{aligned}
$$

$$
p \cdot 2 \sigma-2
$$

ic) whisid. $x^{2} / e^{3}+a^{2} / b^{7}+z^{2} / c^{2} \leq 1$

$$
\rightarrow Q_{i j}=\frac{1}{i} \int d \vec{x}\left(J x_{i} x_{j}-\vec{k}_{i j} \vec{x}\right) \theta\left(x^{2} / e^{2}+j^{1} / s^{\prime}+z^{2} / c^{2} \leq I\right) \rho
$$ when $\vec{x}=(x, y, t)$ od $\rho=$ loyn dhis

(1) yums $\rightarrow D_{i j}=\underline{=} \quad w \mu_{j 1} \quad i=j$
\bigcirc

$$
\begin{aligned}
& Q_{\underline{\underline{16}}}=\frac{1}{2} \int d x d y d z\left(2 x^{2}-j^{1}-z^{2}\right) \theta\left(x^{1} / 0^{2}+y^{1 / 3}+z^{2} / c^{2} \leq 1\right) \\
& -\frac{1}{2} \int a b c \int d x d y d z\left(2 a^{2} x^{2}-b^{3} y^{2}-c^{2} z^{2}\right) \theta\left(x^{2}+y^{2}+z^{3} \leq 1\right)
\end{aligned}
$$

$$
\begin{aligned}
& -b^{2} \int_{0}^{1} d r r^{2} \int d y \int_{0}^{5} d \varphi r^{2} w^{\prime} g n^{1} \varphi \\
& \left.-c^{2} \int_{0}^{1} d r r^{2} \int_{-1}^{1} d \eta \int_{0}^{2} d \varphi r^{2} \cos ^{1} \lambda\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \frac{1}{2} S \operatorname{cosec} \frac{\pi}{5}\left[\frac{8}{3} a^{2}-\frac{4}{\lambda} b^{2}-\frac{4}{2} c^{2}\right] \\
& =\frac{4 \pi}{3} \operatorname{cbc} \int \frac{1}{10}\left[20^{2}-3^{2}-c^{2}\right] \\
& =Q \frac{1}{10}\left(20^{2}-b^{2}-c^{2}\right) \quad \text { vill } Q=\frac{4 \pi}{3} j c b c .=\text { totd lery }
\end{aligned}
$$

$Q_{2 i}=Q \frac{1}{10}\left(25^{2}-c^{2}-c^{2}\right) \quad b y$ Bum y
$\underline{Q_{33}}-\underline{Q \frac{1}{10}\left(2 c^{2}-b^{2}-c^{2}\right)} \quad \sqrt[b]{\text { yamel }}$
(1) huc. $Q_{121}+Q_{22}+Q_{23}=0$
d) As a red rymmatic har, $Q_{i j}$ en dvers be digoreind as tur most guard for of $\mathbb{U}_{i j} \sim$ its phinpel cxes bith is

$$
Q_{i j}=\left(\begin{array}{ccc}
q_{+}+q_{-}- & 0 & 0 \\
0 & q_{+}+q_{-} & 0 \\
0 & 0 & -2 q_{+}
\end{array}\right)
$$

whm

$$
\begin{aligned}
q_{-} & =\frac{1}{2}\left(Q_{21}-Q_{22}\right)=\frac{1}{2} \int d \vec{x} \rho(\vec{x})\left[\left(x^{2}-y^{2}-t^{2}-2 y^{2}+x^{2}+z^{2}\right]\right. \\
& =\frac{3}{2} \int d \vec{x} g(\vec{x})\left(x^{2}-y^{2}\right)
\end{aligned}
$$

yohich worchicats: $\quad \begin{aligned} & x=r \cos \varphi \\ & y=r \operatorname{ci\varphi } \varphi\end{aligned} \quad x^{2}-y^{2}=r^{2}\left(\cos ^{2} \varphi-\sin ^{3} \varphi\right)=r^{2} \cos i \varphi$

$$
\Rightarrow q_{-}=\frac{3}{2} \int_{0}^{r_{r}} d \varphi \int_{0}^{\infty} d r r \int d t \rho(r, \varphi, t) r^{2} \cos 2 \varphi
$$

Nov ht $s(r, \varphi, z)=s(r, \varphi+\alpha, z)$

$$
=\cos 2 \alpha \cdot q-\rightarrow q_{-}=0 \text { win } \alpha \neq \sigma
$$

$$
\text { portc) vile } c=b \rightarrow Q_{11}=Q_{22}=\frac{Q}{10}\left(a^{2}-c^{2}\right)
$$

$$
\begin{aligned}
& \rightarrow q-=\frac{3}{2} \int_{0}^{\pi} d \varphi \int_{0}^{\infty} d r r^{2} \int d z J(r, \varphi+\alpha, z) \cos 2 \varphi \\
& =\frac{3}{2} \int_{\alpha}^{15+\alpha} d \varphi \int_{0}^{\infty} d r r^{2} \int d t \rho(r, \varphi, t) \cos 2(\varphi-\alpha) \\
& =\sum \int_{0}^{i} d \varphi \int_{0}^{\infty} d r r^{2} \int d z \rho(r, \varphi, z)(\cos 2 \varphi \cos 2 \alpha+\dot{i} 2 \varphi \dot{\omega} i \alpha) \\
& r^{2} \operatorname{ri} i \varphi=r^{2} \operatorname{ri} \varphi \cos \varphi=x y \rightarrow \text { the sewelh is } x Q_{12}=0
\end{aligned}
$$

p-20-4
e) $\quad Q_{20}=\sqrt{\frac{10}{5}} \int_{0}^{\infty} d r r^{4} \int d r \rho(r, r) \sqrt{\frac{2}{10}} \frac{1}{2}\left(\eta^{1}-1\right)$

1 (1)

$$
=\frac{1}{2} \int d \vec{x} \rho(\vec{x})\left(J z^{2}-r^{2}\right)=D_{3 y}
$$

(1)

$$
\xlongequal[Q_{2, E 1}]{=\int d r \underbrace{g(r, R)}_{k=1.0 \mid z} \underbrace{P_{2} \pm 1}_{\text {odd }}(\eta)}=0 \text { b yums }
$$

0

$$
\begin{aligned}
& Q_{22}=\sqrt{\frac{\sqrt{\pi}}{5}} \int_{0}^{\infty} d r r^{4} \int d \pi g(r, \pi) \sqrt{\frac{\pi}{45}} \frac{1}{\sqrt{n!}} e^{i i \varphi} \lambda\left(1-\eta^{i}\right) \\
& =\frac{3}{\sqrt{24}} \int d \vec{x} f(\vec{x}) \varphi^{2}\left(1-\eta^{2}\right)(\cos 2 \varphi+i n i \varphi)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
x=r \operatorname{sil} \cos \varphi \\
y=r \operatorname{sil} \omega \varphi
\end{array}\right\} \leadsto x^{2}-j^{2}=r^{2} \dot{n}^{\prime} \mu\left(\cos ^{\prime} \varphi-\dot{\omega}^{\prime} \varphi\right) \\
& z=r \cos l \\
& =\frac{3}{2 \sqrt{6}} \int d \vec{x} \rho(\bar{x})\left(x^{2}-y^{2}\right) \\
& =\frac{\partial}{2 \sqrt{6}} \int d x^{2} \int(\bar{x})\left[\left(2 x^{2}-y^{2}-z^{2}\right)-\left(y^{2}-x^{2}-z^{2}\right)\right] \frac{1}{3} \\
& =\frac{1}{\sqrt{6}}\left(D_{11}-D_{22}\right)
\end{aligned}
$$

