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Chapter 1

Algebraic Structures

NOTATION
∈ is an element of, is in

6∈ is not an element of, is not in

⇒ implies

∧ logical and

∨ logical or

:= is defined to be

≡ identically equals

∃ there exists

∃! there exists exactly one

∀ for all

2 end of proof

⇐⇒ if and only if

∼= is isomorphic to

1



CHAPTER 1. ALGEBRAIC STRUCTURES 2

1 Sets and Mappings

1.1 Sets
Consider a collection of well-defined, distinct objects that can be either real or imagined, such as coins, cars,
numbers, letters, or pieces of chalk.

Definition 1.
(a) A set M is defined by any property that each of the objects does or does not possess. If m is

an object that has the property, then we say “m is an element of M ” or “m is in M ” and write m ∈M .
Otherwise, we write m 6∈M .

(b) The set containing no elements is called empty set or null set and denoted by ∅.

Example 1. All pieces of blue chalk in a classroom form a set Mbc.

If a setM has elements m1,m2, . . ., then we writeM = {m1,m2, . . .}. If p is the property that determines
M , then we write M = {m;m has the property p.}.

Example 2. Some common number sets are

the set of natural numbers denoted by N = {1, 2, 3, . . .},

the set of integers denoted by Z = {. . . ,−2,−1, 0, 1, 2, . . .},

the set of rationals denoted by Q = {p/q; p, q ∈ Z ∧ q 6= 0}

the set of real numbers denoted by R,

the set of complex numbers denoted by C.

Remark 1. It is assumed that the reader has an intuitive understanding of these number sets. For a definition
of N, see Sec. 1.4 below; for a more recent definition, see, e.g., Introduction to Mathematical Philosophy by
Bertrand Russell (1993). For a definition of R, see Algebra by van der Waerden (1991). These books are
listed on the class website.

Remark 2. If the objects themselves are sets, problems may result that we will ignore. See Problem 1.1.1
(Russell’s Paradox ).

Definition 2. Let A and B be sets.
(a) A is called a subset of B (A ⊆ B) if a ∈ A implies a ∈ B (a ∈ A⇒ a ∈ B).
(b) A and B are equal (A = B) if A ⊆ B ∧B ⊆ A.
(c) A is called a proper subset of B (A ⊂ B) if A ⊆ B ∧A 6= B.
(d) ∅ is a subset of any set.

Remark 3. The relation A ⊆ B can be illustrated by a Venn diagram , see Fig. 1.1.1.
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Fig. 1.1.1. A ⊆ B.
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Remark 4. The relation ⊆ is transitive, i.e., ∀A,B,C, A ⊆ B ∧ B ⊆ C ⇒ A ⊆ C. Fig. 1.1.2 depicts the
transitive property.

Fig. 1.1.2. The transitivity of ⊆.

Definition 3. Let A and B be sets. We define
(a) the union of A and B by A ∪B := {x;x ∈ A ∨ x ∈ B},
(b) the intersection of A and B by A ∩B := {x;x ∈ A ∧ x ∈ B} and
(c) the difference between A and B, or the complement of B in A, by A\B := {x;x ∈ A∧x 6∈ B}.

Remark 5. These relations can also be illustrated by Venn diagrams, see Fig. 1.1.3. They have distributive
properties, see Problem 1.1.2 (Distributive Property of the Union and Intersection Relations).

(a) A ∪B. (b) A ∩B. (c) A \B.

Fig. 1.1.3. Illustration of (a) the union, (b) the intersection, and (c) the difference of two sets A and B.

Definition 4. Let A and B be sets. If A ∩B = ∅, then we say that A and B are disjoint .

Definition 5. The Cartesian product of two sets A and B, denoted by A×B, is the set of all possible
ordered pairs with the first component of each pair an element of A, and the second one an element of
B. We write A×B = {(a, b); a ∈ A ∧ b ∈ B}.

Example 3. R× R ≡ R2 is an algebraic representation of the Cartesian plane.
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1.2 Mappings

Definition 1. Let X,Y be sets.
(a) Let ϕ be a prescription that associates with every x ∈ X one and only one y = ϕ(x) ∈ Y . Then

ϕ is called a mapping from X to Y , and we write ϕ : X → Y .

Fig. 1.2.1. A mapping.

(b) y = ϕ(x) is called the image of x under ϕ, and x is called a pre-image of y. We write x ϕ→ y
or ϕ : x→ y.

(c) If every y ∈ Y has at least one pre-image in X, then ϕ is called a surjective mapping. We write
Y = ϕ(X) and say that ϕ maps X onto Y .

(d) If every image y ∈ Y has one and only one pre-image in X, then ϕ is called an injective or
one-to-one mapping.

(a) A mapping that is not surjective. (b) An injective mapping.

Fig. 1.2.2. Properties of mappings.

(e) A mapping that is both injective and surjective is called a bijective mapping.
(f) Let X be a set and let ϕ be a bijective mapping from N to X. Then X is called a countable set.

Example 1. Z and Q are countable sets. R is not countable.
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Remark 1. No pre-image can have more than one image, and every x ∈ X must be a pre-image of some
y ∈ Y .

Fig. 1.2.3. A non-mapping.

Remark 2. An image can have multiple pre-images (See x1 and x3 in Fig. 1.2.1).

Example 2. Let X = Y = R. x ϕ→
√
x is not a mapping. But, if we choose X = {x;x ∈ R ∧ x > 0}

and Y = R, then x
ϕ→
√
x is a mapping. For more examples, see Problem 1.1.3 (Mappings) and

Problem 1.1.4 (Parabolic Mapping).

Remark 3. If ϕ : X → Y is bijective, then there exists exactly one mapping ϕ−1 : Y → X such that ϕ : x→ y
implies that ϕ−1 : y → x. ϕ−1 is called the inverse of ϕ. (This is plausible, but requires a proof, which we
skip for now.)

Definition 2. Let X and Y be two identical sets. Let x be an arbitrary element of X. The mapping
ϕ : x→ x is called the identity mapping of X denoted by IX or idX .

Remark 4. It is obvious that idX is bijective, and idX−1 = idY = idX .
Remark 5. If X and Y are number sets, then mappings f : X → Y are called functions, and we write
y = f(x). For functions, we sometimes relax the rule that no pre-image can have more than one image;
functions violating the rule are called multivalued functions, see Chapter 2.

Definition 3. Let X be a set. Let I be another set called index set . We say that the images xi of an
arbitrary mapping ϕ : i ∈ I → xi ∈ X are a system of elements of X that is labelled or indexed by I.

Remark 6. We often choose I = N. However, this is not necessary; in general, I does not even have to be
countable.

Example 3. Counting is an example of indexing objects with I = N.

Example 4. Consider rotations ρ in the Cartesian plane. We can label each ρ with the corresponding
angle of rotation α. This uses the uncountable set I = [0, 2π[ to label rotations: ϕ : α ∈ I → ρα.

Remark 7. We can use I to index sets. This allows us to generalize our previous concepts of union and
intersection: for more than two sets, the union of these sets (labelled by I) can be defined by⋃

i∈I
Xi := {x;∃ i ∈ I : x ∈ Xi},
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and the intersection by ⋂
i∈I

Xi := {x;∀ i ∈ I, x ∈ Xi}.

Fig. 1.2.4. Union and intersection of three sets.

Remark 8. We can also generalize the Cartesian product with the help of I, e.g., R× R× · · · × R︸ ︷︷ ︸
n times

≡ Rn :=

{(x1, x2, . . . , xn);∀ i ∈ [1, n] ∩ N, xi ∈ R}.

Definition 4. Let X,Y, Z be sets. Let f : X → Y and g : Y → Z be mappings. The relation that
connects each x ∈ X to some g(f(x)) ∈ Z defines another mapping g◦f : X → Z called the composition
of f and g. We say “g after f", or “g follows f".

Fig. 1.2.5. The composition of f and g.
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Proposition 1. Let X1, X2, X3, X4 be sets. Let f1 : X1 → X2, f2 : X2 → X3, f3 : X3 → X4 be
mappings. Then f3 ◦ (f2 ◦ f1) = (f3 ◦ f2) ◦ f1 ≡ f3 ◦ f2 ◦ f1.

Proof. Let x be an arbitrary element of X1. Then (f3 ◦ (f2 ◦f1))(x) = f3

(
(f2 ◦f1)(x)

)
= f3

(
f2(f1(x))

)
.

We also have ((f3◦f2)◦f1)(x) = (f3◦f2)
(
f1(x)

)
= f3

(
f2(f1(x))

)
. The equality f3◦(f2◦f1) = (f3◦f2)◦f1

is thus established: for all x ∈ X1, both of these two mappings map x to f3
(
f2(f1(x))

)
∈ X4. We say

that the operation ◦ is associative and write f3 ◦ f2 ◦ f1.

Remark 9. In general, the operation ◦ is not commutative, i.e., f2 ◦ f1 6= f1 ◦ f2.

Example 5. Consider two real functions f : R → R and g : R → R given by f(x) = x + 1 and
g(x) = x2, respectively. Then g ◦ f 6= f ◦ g: for an arbitrary x ∈ R, (g ◦ f)(x) ≡ g(f(x)) = (x+ 1)2 6=
x2 + 1 = f(g(x)) ≡ (f ◦ g)(x).

1.3 Ordered Sets

Definition 1. Let X be a set. An order on X is defined as a relation x ∼ y between components of
ordered pairs (x, y) ∈ X ×X that possesses the following properties: ∀x, y, z ∈ X,

1. x ∼ x; (reflexivity)
2. (x ∼ y ∧ y ∼ x)⇒ x = y;
3. (x ∼ y ∧ y ∼ z)⇒ x ∼ z. (transitivity)

If, in addition,
4. ∀ (x, y) ∈ X ×X,x ∼ y ∨ y ∼ x,

then we call the order linear .

Example 1. Let m,n ∈ N. The relation “m divides n” is an order on N. It is not linear since, e.g., 2
does not divide 3 and 3 does not divide 2.

Example 2. The relation “Person 1 is the mother of Person 2” is not an order on the set of all people,
since reflexivity is not satisfied.

Example 3. The ordinary “less or equal" relation 6 is a linear order on N,Z,Q, and R.

Remark 1. 6 is often used to denote general orders.
Remark 2. Also of interest are equivalence relations, see Problem 1.1.5 (Equivalence Relations).

Definition 2.
(a) Let X be a set and 6 an order on X. Let Y ⊆ X. Let b ∈ X have the property: ∀ y ∈ Y, y 6 b

(b 6 y). Such a b is called an upper (a lower) bound of Y , and we say that Y is bounded above
(below) by b.

(b) Let B be the set of upper (lower) bounds of Y . Let b0 ∈ B have the property: ∀b ∈ B, b0 6 b
(b 6 b0). We call b0 the least upper bound (greatest lower bound) or the supremum (infimum)
of Y , and we write b0 = supY (b0 = inf Y ).

Remark 3. The supremum or infimum of Y , if it exists, is not necessarily an element of Y .
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Example 4. Consider Y = [0, 1[ ⊂ R = X. We have supY = 1 6∈ Y , and inf Y = 0 ∈ X.

1.4 Natural Numbers, and the Principle of Mathematical Induction
Remark 1. An axiom is a statement that is postulated to be true within a given logical framework and cannot
be proven within that framework. Axioms serve as a foundation for provable statements.

Definition 1. The natural numbers N can be defined by Peano’s axioms:
(1) the number 1 ∈ N;
(2) for all n ∈ N, there exists a unique successor n+ ∈ N;
(3) for all n ∈ N, n+ 6= 1, i.e., 1 is not the successor of any number;
(4) if m+ = n+, then m = n, i.e., every natural number except for 1 is the unique successor of one

and only one number;
(5) Let M ⊆ N. If M satisfies

(a) 1 ∈M and
(b) ∀m ∈M, ∃!m+ ∈M ,

then M = N.

Remark 2. The successor n+ is usually denoted by n+ 1. We write 1+ ≡ 1 + 1 = 2, 2+ = 3, 3+ = 4, etc.

Remark 3. Axiom (5) is called the principle of mathematical induction . It can be rephrased as follows.
Let a statement S that depends on a natural number n be true for n = 1 (‘base case’). If one can show that
“S is true for n = k" implies “S is true for n = k + 1" (‘induction step’), then S is true for all n ∈ N.

Proposition 1.
n∑
i=1

i =
n(n+ 1)

2
∀n ∈ N .

Proof. The base case is obviously true:

1∑
i=1

i ≡ 1 =
1(1 + 1)

2
.

For the induction step, let us assume that for some k ∈ N,

k∑
i=1

i =
k(k + 1)

2
.

Now, we add k + 1 to both sides of the equality:

k+1∑
i=1

i = (k + 1) +

k∑
i=1

i = (k + 1) +
k(k + 1)

2
=

(k + 1)((k + 1) + 1)

2
.

Hence, the statement is true for all n ∈ N by the principle of mathematical induction.

Remark 4. The principle of mathematical induction still applies if we take the base case to be some natural
number n0 > 1. This is true since there exists an obvious bijective mapping from {n0, n0 + 1, n0 + 2, . . .} to
N. For an example, see Problem 1.1.6 (Bounds for n!). For an example of pitfalls, see Problem 1.1.7 (All
Ducks are the Same Color).
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1.5 Problems
1.1.1 Russell’s Paradox (B. Russell, 1901)

a) Consider the set M defined as the set of all sets that do not contain themselves as an element: M =
{x;x /∈ x}. Discuss why this is a problematic definition.

b) A less abstract version of Russell’s paradox is known as the barber’s paradox: Consider a town where all
men either shave themselves, or let the barber shave them and don’t shave themselves. Now consider the
statement

The barber is a man in town who shaves all men who do not shave themselves, and only those.

Discuss why this definition of the barber is problematic (assuming there actually is a barber in town).

hint: Ask “Does the barber shave himself?"

c) Suppose the definition of the barber is modified to read

The barber shaves all men in town who do not shave themselves, and only those.

Discuss what this modification does to the paradox.

(3 points)

1.1.2 Distributive property of the union and intersection relations

Show graphically that the relations ∪ and ∩ defined in ch.1, §1.1, def. 3 obey the following distributive
properties: For any three sets A, B, C,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(2 points)

1.1.3 Mappings

Are the following f : X → Y true mappings? If so, are they surjective, or injective, or both?

a) X = Y = Z, f(m) = m2 + 1.

b) X = Y = N, f(n) = n+ 1.

c) X = Z, Y = R, f(x) = log x.

d) X = Y = R, f(x) = ex.

(2 points)

1.1.4 Parabolic Mapping

Consider f : Z→ Z defined by f(n) = an2 + b n+ c, with a, b, c ∈ Z.

a) For which triplets (a, b, c) is f surjective?

b) For which (a, b, c) is f injective?

(4 points)

5. Equivalence relations

Consider a relation ∼ on a set X as in ch. 1 §1.3 def. 1, but with the properties
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i) x ∼ x ∀x ∈ X (reflexivity)

ii) x ∼ y ⇒ y ∼ x ∀x, y ∈ X (symmetry)

iii) (x ∼ y ∧ y ∼ z)⇒ x ∼ z (transitivity)

Such a relation is called an equivalence relation. Which of the following are equivalence relations?

a) n divides m on N.

b) x ≤ y on R.

c) g is perpendicular to h on the set of straight lines {g, h, . . .} in the cartesian plane.

d) a equals b modulo n on Z, with n ∈ N fixed.

hint: “a equals b modulo n", or a = b mod(n), with a, b ∈ Z, n ∈ N, is defined to be true if a − b is
divisible on Z by n; i.e., if (a− b)/n ∈ Z.

(3 points)

6. Bounds for n!

Prove by mathematical induction that

nn/3n < n! < nn/2n ∀ n ≥ 6

hint: (1 + 1/n)n is a monotonically increasing function of n that approaches Euler’s number e for n→∞.

(4 points)

7. All ducks are the same color

Find the flaw in the “proof” of the following

proposition: All ducks are the same color.

proof: n = 1: There is only one duck, so there is only one color.
n = m: The set of ducks is one-to-one correspondent to {1, 2, . . . ,m}, and we assume that all m

ducks are the same color.
n = m+1: Now we have {1, 2, . . . ,m,m+1}. Consider the subsets {1, 2, . . . ,m} and {2, . . . ,m,m+1}.

Each of these represent sets of m ducks, which are all the same color by the induction
assumption. But this means that ducks #2 through m are all the same color, and ducks
#1 and m+ 1 are the same color as, e.g., duck #2, and hence all ducks are the same color.

remark: This demonstration of the pitfalls of inductive reasoning is due to George Pólya (1888 - 1985), who
used horses instead of ducks.

(2 points)
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2 Groups

2.1 Definition of a Group

Definition 1. Let G 6= ∅ be a set. Let ϕ : G×G→ G be a mapping that assigns to every ordered pair
(a, b) ∈ G×G an element of G, denoted by a ∨ b. If ∨ possesses the following properties: ∀ a, b, c ∈ G,

i. a ∨ b ∈ G (closure)

ii. (a ∨ b) ∨ c = a ∨ (b ∨ c) ≡ a ∨ b ∨ c (associativity)

iii. ∃ e ∈ G : e ∨ a = a (existence of a neutral element)

iv. ∃ a−1 ∈ G : a−1 ∨ a = e (existence of an inverse)

then we call G a group under the operation ∨ and write (G,∨). If, in addition, ∨ has the property:
∀ a, b ∈ G,

v. a ∨ b = b ∨ a (commutativity)

then we call G an abelian group and ∨ a commutative operation .

Remark 1. “∨” is used here to denote the mapping, i.e., ϕ
(

(a, b)
)
≡ a∨ b. This should not be confused with

the logical operator “or”.

Remark 2. For abelian groups, “∨” is often written as “+” and called addition . In this case, e is denoted
by 0, and a−1 by −a. One usually writes a− a = 0 instead of a+ (−a) = 0. With these conventions we call
the group additive , or a group under addition .

Example 1.
(1) (Z,+) with + the ordinary addition is an abelian group whose neutral element is the number 0.
(2) (R,+) is another abelian group.

Proposition 1. R \ {0} is an abelian group under ordinary multiplication. Its neutral element is the
number 1.

Proof. Check that the group satisfies the five required properties: ∀ a, b, c ∈ R \ {0},
(i) ab ∈ R \ {0};
(ii) (ab)c = a(bc);
(iii) 1a = a;
(iv) ∃ a−1 = 1

a ∈ R \ {0}: a−1a = 1
aa = 1;

(v) ab = ba.

Remark 3. The notation a∨ b ≡ a · b ≡ ab and e ≡ 1 is used more generally, in which case the group is called
multiplicative , or a group under multiplication . (NB: This does NOT imply that the group is abelian!)

Proposition 2. Let (G,∨) be a group. Then
(a) a ∨ a−1 = a−1 = e ∀a ∈ G (left inverse = right inverse)
(b) a ∨ e = e ∨ a = a (left neutral element = right neutral element)
(c) The neutral element e is unique.
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Proof.
(a) From Definition 1 iii, iv it follows that
a−1 ∨ a ∨ a−1 = e ∨ a−1 = a−1.
But a−1 has an inverse (a−1)−1. Multiply with that from the left:
(a−1)−1 ∨ a−1 ∨ a ∨ a−1 = (a−1)−1 ∨ a−1 = e
But the lhs equals e ∨ a ∨ a−1 = a ∨ a−1.
So we have shown that the left inverse equals the right inverse AND that a = (a−1)−1.
(b) e ∨ a = a ∨ a−1 ∨ a = a ∨ e.
(c) Suppose ∃ e1, e2 : e1 ∨ a = a = a ∨ e2 ∀a. Then
e1 ∨ e2 = e2 and e1 = e1 ∨ e2, and hence e2 = e1.

Example 2. The set {a, e} with an operation ∨ defined by e ∨ e = e, e ∨ a = a ∨ e = a, and a ∨ a = e
forms an abelian group.

Remark 4. For finite groups, the operation scheme can be represented by a table. For instance, for the group
in Example 2, we have

a e

a e a

e a e

.

For a more elaborate group table, see Problem 1.2.1 (Pauli Group).

2.2 Rules of Operation

Proposition 1. Let (G,∨) be a group. For all a, b ∈ G, (a ∨ b)−1 = b−1 ∨ a−1.

Proof. We know that a ∨ b ∈ G. To complete the proof, we simply write (a ∨ b)−1 ∨ (a ∨ b) = e =
b−1 ∨ b = b−1 ∨ (e ∨ b) = b−1 ∨ ((a−1 ∨ a) ∨ b)) = (b−1 ∨ a−1) ∨ (a ∨ b).

Definition 1.
(a) Let (G,∨) be a multiplicative group. We write the element that is composite of n ∈ N elements

in G as

a1 ∨ a2 ∨ · · · ∨ an−1 ∨ an ≡ a1a2. . .an−1an =:
n∏
α=1

aα

and define recursively
n+1∏
α=1

aα :=

(
n∏
α=1

aα

)
an+1.

We call the element the product of factors a1, a2, . . . , an−1, an.
(b) The product of n identical factors

n∏
α=1

a =: an

is called the n-th power of a.
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Proposition 2. Let (G,∨) be a multiplicative group. We have(
m∏
α=1

aα

) n∏
β=1

am+β

 =

m+n∏
ρ=1

aρ.

Proof. We are going to complete the proof by applying mathematical induction. First, we will check
that for n = 1, the statement is true. It is obvious that(

m∏
α=1

aα

) 1∏
β=1

am+β

 ≡ ( m∏
α=1

aα

)
am+1 =

m+1∏
ρ=1

aρ.

Then, supposing that the statement holds for some k ∈ N, we want to show that it is still valid for
n = k + 1. For n = k, we have (

m∏
α=1

aα

) k∏
β=1

am+β

 =

m+k∏
ρ=1

aρ.

Now, we multiply both sides of the equation by am+k+1. The left-hand side of the equation becomes( m∏
α=1

aα

) k∏
β=1

am+β

 am+k+1 =

(
m∏
α=1

aα

) k∏
β=1

am+β

 am+k+1

 =

(
m∏
α=1

aα

)k+1∏
β=1

am+β

 .

The right-hand side of the equation becomes(
m+k∏
ρ=1

aρ

)
am+k+1 =

m+k+1∏
ρ=1

aρ.

Thus, we have shown that the statement is true for n = k + 1:(
m∏
α=1

aα

)k+1∏
β=1

am+β

 =

m+k+1∏
ρ=1

aρ.

Hence, the statement is true for all n ∈ N by the principle of mathematical induction.

Corollary 1. Let (G,∨) be a multiplicative group and a ∈ G be an arbitrary element in the group. We
have

(a) aman = am+n;
(b) (am)n = amn.

Proof. See Problem 1.2.2 (Products)

Definition 2. The zeroth power of a is defined by a0 := e, and the negative powers of a by
a−n := (a−1)n.

Remark 1. The latter definition complies with Corollary 1, (b).
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Remark 2. For additive groups, we write

a1 ∨ a2 ∨ · · · ∨ an−1 ∨ an ≡ a1 + a2 + · · ·+ an−1 + an =:
n∑
α=1

aα

and name the composite element the sum of the aα’s. A sum of identical elements is a multiple of that
element:

n∑
α=1

a =: na.

Proposition 2 and its corollaries still hold with
∏

replaced by
∑

:(
m∑
α=1

aα

)
+

 k∑
β=1

am+β

 =

m+k∑
ρ=1

aρ;

ma+ na = (m+ n)a,

and
mna = nma.

2.3 Permutations

Definition 1. LetM be a finite set and P : M →M be a bijective mapping. We call P a permutation
of M .

Remark 1. If M is finite with n ∈ N elements, then M and the set {1, 2, . . . , n − 1, n} ≡ {i}ni=1 share the
same cardinality. We are able to characterize every permutation P of M with its action on {i}ni=1:

E =

(
1, 2, 3, . . . , n

1, 2, 3, . . . , n

)
, P1 =

(
1, 2, 3, . . . , n

2, 1, 3, . . . , n

)
, P2 =

(
1, 2, 3, . . . , n

3, 2, 1, . . . , n

)
, etc.

Definition 2. If it takes an even number of transpositions (i.e., pairwise exchanges of elements) to
convert a permutation P into E, then we say that P is an even permutation and write sgnP = 1.
Otherwise, if it takes an odd number of transpositions, then we say that P is an odd permutation and
write sgnP = −1.

Remark 2. The decomposition of a permutation into transpositions is not unique, but the such defined sign
is. Proof: Math books.

Example 1. For permutations listed in Remark 1, we have sgnE = 1, sgnP1 = −1, and sgnP2 = −1.
The permutation (

1, 2, 3, . . . , n

3, 1, 2, . . . , n

)
is even.
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Proposition 1. The set of permutations of a finite set M with n ∈ N elements forms a group under
composition called the symmetric group Sn.

Proof. Ascertain that the set of all the permutations satisfies the four group axioms: ∀P1, P2 ∈ Sn,
(i) (P1 : M →M) ∧ (P2 : M →M) =⇒ P1 ◦ P2 : M →M ;
(ii) associative laws are satisfied because of Proposition 1 in 1.2;
(iii)

E =

(
1, 2, 3, . . . , n

1, 2, 3, . . . , n

)
serves as the neutral element;

(iv) existence of inverses is due to the fact that bijective mappings have inverses.

Remark 3. In general, Sn is not abelian. See Problem 1.2.3 (The group S3).

2.4 Subgroups

Definition 1. Let (G,∨) be a group and H 6= ∅ ⊂ G. If H is also a group under ∨, we call it a
subgroup of G.

Example 1. Let e be the neutral element of a group G. {e} is a subgroup of G.

Theorem 1. H is a subgroup of (G,∨) if and only if for all a, b ∈ H, a ∨ b−1 ∈ H.

Proof. First, it is trivial that H is a subgroup implies that for all a, b ∈ H, a ∨ b−1 ∈ H. It is more
instructive to complete the proof by contrapositive. That is, we would like to show the statement that
there exists some a, b ∈ H such that a ∨ b−1 6∈ H implies that H is not a subgroup. Suppose that such
a and b exist. We know that if H is a subgroup, then a∨ b−1 ∈ H. It directly follows that H cannot be
a subgroup. Proof by contrapositive can be very useful in some cases (although the reader might find
that in the current example, it seems somewhat unnecessary).

Second, we want to show that for all a, b ∈ H, a ∨ b−1 ∈ H implies that H is a subgroup. Suppose
that for all a, b ∈ H, a∨ b−1 ∈ H. We need to check that H satisfies the four group axioms. Notice that
if we choose two identical elements x = y, then e = x ∨ x−1 = x ∨ y−1 ∈ H. We have thus established
that the neutral element is contained in H. Now, if we choose the neutral element as one of the two
elements in our assumption (let a = e), we will have e∨ b−1 = b−1 ∈ H, for all b ∈ H; that is, existence
of inverses is satisfied. What is more, combining existence of inverses and the assumption, we have
∀ b ∈ H,∃! b−1 ∈ H : ∀ a ∈ H, a ∨ b = a ∨ (b−1)−1 ∈ H; in other words, we have ∀ a, b ∈ H, a ∨ b ∈ H,
the closure. At last but not least, the fact that (G,∨) is a group ensures that the operation ∨ is
associative.
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Example 2. Let us consider the following two elements of S3,

E =

(
1, 2, 3

1, 2, 3

)
and P =

(
1, 2, 3

1, 3, 2

)
.

We want to apply Theorem 1 to check whether or not g = {E,P} is a subgroup of S3 (under
composition ◦). First, notice that E−1 = E, and P−1 = P , since E ◦ E = E, and P ◦ P = E. It is
straightforward to check the following:

E ◦ E−1 = E ∈ g;

E ◦ P−1 = E ◦ P = P ∈ g;

P ◦ E−1 = P ◦ E = P ∈ g;

P ◦ P−1 = E ∈ g.

Hence, g = {E,P} is a subgroup of S3 by Theorem 1.

2.5 Isomorphisms and Automorphisms

Definition 1.
(a) Let (G,∨) and (H, ∗) be groups. Let ϕ : G→ H be a bijective mapping such that for all a, b ∈ G,

ϕ(a ∨ b) = ϕ(a) ∗ ϕ(b). Such a ϕ is called an isomorphism between G and H. We say that G is
isomorphic to H and write G ∼= H.

(b) Furthermore, if G = H, then we call ϕ an automorphism on G. That is, an isomorphism
between a group and itself is an automorphism on the group.

Remark 1. We refer to ϕ(a ∨ b) = ϕ(a) ∗ ϕ(b) by saying that “ϕ respects the operation".

Example 1. Consider a set G of real 2× 2 gα matrices defined by

G =

{
gα ≡

(
cosα sinα

− sinα cosα

)
;α ∈ [0, 2π[

}
,

and a set H of complex numbers hβ defined by

H = {hβ ≡ eiβ ;β ∈ [0, 2π]} .

It is easy to show that G is a group under matrix multiplication (denoted by ·), and H is a group under
multiplication of complex numbers (denoted by ∗). Let us define a mapping ϕ : G→ H by the relation
ϕ(gα) := hα. It is obvious that ϕ is bijective. Now we check whether ϕ is an isomorphism between G
and H. First, notice that for all gα, gβ ∈ G,

gα · gβ =

(
cosα sinα

− sinα cosα

)
·
(

cosβ sinβ

− sinβ cosβ

)

=

(
cosα cosβ − sinα sinβ cosα sinβ + sinα cosβ

− sinα cosβ − cosα sinβ − sinα sinβ + cosα cosβ

)

=

(
cos(α+ β) sin(α+ β)

− sin(α+ β) cos(α+ β)

)
= gα+β .
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Accordingly, we have ϕ(gα · gβ) = ϕ(gα+β) = hα+β = ei(α+β) = eiα ∗ eiβ = hα ∗ hβ = ϕ(gα) ∗ ϕ(gβ).
Hence, we have shown that G ∼= H.

Remark 2. G is a representation of the group SO (2) (SO stands for “Special Orthogonal”.) H is a reprentation
of the group U (1) (U stands for “Unitary".)

Remark 3. For an example of an automorphism, and some properties of abelian groups, see Problem 1.2.4
(Abelian Groups).

2.6 Problems
1.2.1. Pauli group

The Pauli matrices are complex 2× 2 matrices defined as

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

Now consider the set P1 that consists of the Pauli matrices and their products with the factors −1 and ±i:

P1 = {±σ0,±iσ0,±σ1,±iσ1,±σ2,±iσ2,±σ3,±iσ3}

Show that this set of 16 elements forms a (nonabelian) group under matrix multiplication called the Pauli
group. It plays an important role in quantum information theory.

(3 points)

1.2.2. Products

Prove the corollary to proposition 2 of ch.1 §2.2: If a is an element of a multiplicative group, and n,m ∈ N,
then

a) an am = an+m

b) (an)m = anm

(2 points)

10. The group S3

a) Compile the group table for the symmetric group S3. Is S3 abelian?

b) Find all subgroups of S3. Which of these are abelian?

(6 points)

1.2.4. A Property of Abelian Groups

Let (G,∨) be a group. Let a ∈ G be a fixed element, and define a mapping ϕ : G → G by ϕ(x) =
a ∨ x ∨ a−1 ∀x ∈ G.

a) Show that ϕ defines an automorphism on G, called an inner automorphism.

b) Show that abelian groups have no inner automorphisms except for the identity mapping ϕ(x) = x.

(4 points)
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3 Fields

3.1 Bilinear Mappings

Definition 1. Let A,B,C be additive groups with neutral elements 0A, 0B , 0C , respectively. Let ϕ :
A×B → C be a mapping defined by the relation ϕ((a, b)) ≡ ϕ(a, b) ≡ a ·b ∈ C. If ϕ satisfies distributive
laws: ∀ a1, a2, a3 ∈ A ∧ b1, b2, b3 ∈ B,

i. (a1 + a2) · b1 = a1 · b1 + a2 · b1;

ii. a1 · (b1 + b2) = a1 · b1 + a1 · b2,

then we call ϕ a bilinear mapping .

Remark 1. In i, the + on the left-hand side (LHS) of the equality is the addition on A. In ii, the + on the
LHS is the addition on B. In both i and ii, the + on the right-hand side (RHS) is the addition on C.

Remark 2. Usually called multiplication, · is referred to as an exterior operation, since it connects elements
from two different groups. On the other hand, +’s are interior operations because of the closure.

Proposition 1. Consider A,B,C and ϕ in Definition 1. The following statements are true: ∀ a ∈
A ∧ b ∈ B,

(1) 0A · b = a · 0B = 0C ;
(2) −a · b = a · (−b) = −(a · b);
(3) −a · (−b) = a · b.

Proof. For this proof, we will just write symbolic expressions.
(1) 0A = 0A + 0A =⇒ 0A · b = (0A + 0A) · b = 0A · b+ 0A · b

0C = 0A · b+ (−0A · b) ≡ 0A · b− 0A · b
∴ 0C = 0A · b+ 0A · b− 0A · b = 0A · b

0B = 0B + 0B =⇒ a · 0B = a · (0B + 0B) = a · 0B + a · 0B
0C = a · 0B − a · 0B
∴ 0C = a · 0B + a · 0B − a · 0B = a · 0B

(2) 0C = 0A · b = (a+ (−a)) · b = a · b+ (−a) · b =⇒ −a · b = −(a · b)
0C = a · 0B = a · (b+ (−b)) = a · b+ a · (−b) =⇒ a · (−b) = −(a · b)
0C = 0C =⇒ −a · b = a · (−b) = −(a · b)

(3) −a · b = a · (−b) =⇒ −a · (−b) = a · (−(−b)) = a · b

3.2 Fields

Definition 1. Let (K,+) be an additive group with neutral element 0. Let · : K × K → K be an
associative bilinear multiplication. If K \ {0} is a group under ·, then we call K a field .

Example 1. Under ordinary addition and multiplication, R is a commutative field. So is Q, see
Problem 1.3.1 (Fields). Z is not, since not every element has an inverse.
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3.3 The Field of Complex Numbers

Theorem 1. We can construct a commutative field C, called the field of complex numbers, with
the following properties:

(1) R ⊂ C;
(2) ∃! i ∈ C : i2 = −1;
(3) C = {z = z1+iz2; z1, z2 ∈ R}, i.e., every element z ∈ C can be uniquely written as z = z1+iz2 ≡

z′ + iz′′ for some z1, z2 ∈ R (z′, z′′ ∈ R).

Remark 1. z1 (z′) and z2 (z′′) are called the real and imaginary parts of a complex number z, respectively.
Note that they are both real numbers. We call z′ − iz′′ =: z∗ ≡ z̄ the complex conjugate of z = z′ + iz′′.

Proof. Let us consider the Cartesian product R2 ≡ R× R. We would like to first establish that R2 is a
field under certain addition and multiplication; thereafter, to complete the proof, we simply show that
C ∼= R2. Let a = (a1, a2), b = (b1, b2) and c = (c1, c2) be elements of R2.

First, let us turn R2 into an additive group by defining a proper addition: ∀ a, b ∈ R2, a + b :=
(a1 + b1, a2 + b2). It is easy to check that (R2,+) is a group with neutral element (0, 0). Second, we
need to define a proper multiplication on R2: ∀ a, b ∈ R2, a · b ≡ ab := (a1b1− a2b2, a1b2 + a2b1). Notice
that the multiplication is both commutative and distributive: ∀ a, b, c ∈ R2,

ab = (a1b1 − a2b2, a1b2 + a2b1) = (b1a1 − b2a2, b2a1 + b1a2) = ba;

(b+ c)a = a(b+ c) = a(b1 + c1, b2 + c2)

= (a1(b1 + c1)− a2(b2 + c2), a1(b2 + c2) + a2(b1 + c1))

= (a1b1 − a2b2, a1b2 + a2b1) + (a1c1 − a2c2, a1c2 + a2c1)

= ab+ ac.

Similarly, one can also check that associative laws are satisfied: ∀ a, b, c ∈ R2,

a(bc) = a(b1c1 − b2c2, b1c2 + b2c1)

= (a1(b1c1 − b2c2)− a2(b1c2 + b2c1), a1(b1c2 + b2c1) + a2(b1c1 − b2c2))

= ((a1b1 − a2b2)c1 − (a1b2 + a2b1)c2, (a1b1 − a2b2)c2 + (a1b2 + a2b1)c1)

= (ab)c.

We have thus shown that · is an associative bilinear multiplication. Now, we want to show that (R2 \
{(0, 0)}, ·) is a group. The fact that R under ordinary addition and multiplication is a field ensures that
the closure is satisfied. The multiplicative identity is (1, 0), because ∀ a ∈ R2, a · (1, 0) = (1, 0) · a =
(a1, a2) = a. We have already proven that · is associative. To show that existence of (multiplicative)
inverses holds, let a 6= (0, 0). It follows that a12 + a2

2 6= 0. Notice that ∀ a ∈ R2,

(a1, a2) ·
(

a1
a12 + a22

,− a2
a12 + a22

)
=

(
a1

2 + a2
2

a12 + a22
,
−a1a2 + a2a1
a12 + a22

)
= (1, 0).

This implies that

a−1 =

(
a1

a12 + a22
,− a2

a12 + a22

)
.

Hence, we have shown that R2 is a field under designated addition and multiplication.
Notice the curious fact that (0, 1)2 = (0, 1) · (0, 1) = (−1, 0) is very similar to i2 = −1. Now, we can

define C by means of an isomorphism ϕ : R× R→ C given by the relations: ∀ z1, z2 ∈ R,
ϕ((0, 1)) = i ∈ C;
ϕ((z1, z2)) = z1 + iz2 ∈ C.
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Remark 2. The isomorphism can be graphically represented by the complex plane.

Fig. 3.3.1. The complex plane.

Proposition 1. The set of complex numbers {z = eiα;α ∈ [0, 2π]} forms a circle centered at the origin
0 + i0 with radius 1 in the complex plane. Euler’s formula reads

eiα = cosα+ i sinα.

Proof. Recall the Maclaurin series of ex: for |x| <∞,

ex =

∞∑
n=0

xn

n!
.

It directly follows that

eiα =

∞∑
n=0

(iα)n

n!

=

∞∑
m=0

(iα)2m

(2m)!
+

∞∑
n=0

(iα)2n+1

(2n+ 1)!

=

∞∑
m=0

(−1)m
α2m

(2m)!
+ i

∞∑
n=0

(−1)n
α2n+1

(2n+ 1)!

= cosα+ i sinα.

We also know that for each α ∈ [0, 2π], eiα = z1 + iz2 with some z1, z2 ∈ R. Accordingly, we have
z1

2 + z2
2 = cos2 α + sin2 α = 1, which describes a circle centered at the origin with radius 1 in the

complex plane.

Corollary 1. Let z ∈ C. There exist real numbers r ∈ [0,∞) and φ ∈ [−π, π) such that z = reiφ.

Proof. From Proposition 1 it directly follows that z = z1 + iz2 = r cosφ + ir sinφ = reiφ with
r =
√
z12 + z22 and φ = arctan (z2/z1).

Remark 3. r is called themodulus or absolute value of z and denoted by r = |z|. φ is called the argument
of z; one writes φ = arg z.
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Remark 4. φ ∈ [−π, π) is merely a particular choice. In general, φ can be defined on any interval of length
2π.

Remark 5. Let z = reiφ ∈ C for some r ∈ [0,∞) and φ ∈ R mod 2π. Notice that ∀n ∈ Z, ei2nπ = 1 =⇒ z =
reiφ = rei(φ+2nπ). That is, a complex number has multiple arguments.

Definition 1. Let z = reiφ ∈ C for some r ∈ [0,∞) and φ ∈ R mod 2π. Real powers of z are defined
by zx := rxeixφ for all x ∈ R.

Remark 6. The definition is consistent with Corollary 1, (b) in 2.2, since zx = (reiφ)x = rxeixφ. Note the
difference that the corollary only holds for n ∈ N.
Remark 7. For x 6∈ N, zx is not unique. In particular, when x = 1

n (n ∈ N), zx has n different values called
n-th roots of z.

Example 1. Let us compute second roots of i. Let us first write i = ei
π
2 = ei(

π
2 +2π). The second

roots are (i
1
2 )0 = ei

π
4 and (i

1
2 )1 = ei

1
2 (π2 +2π) = ei

5π
4 .

Fig. 3.3.2. The second roots of i in the complex plane.

3.4 Problems
1.3.1. Fields

a) Show that the set of rational numbers Q forms a commutative field under the ordinary addition and
multiplication of numbers.

b) Consider a set F with two elements, F = {θ, e}. On F , define an operation “plus" (+), about which we
assume nothing but the defining properties

θ + θ = θ , θ + e = e+ θ = e , e+ e = θ

Further, define a second operation “times" (·), about which we assume nothing but the defining properties

θ · θ = e · θ = θ · e = θ , e · e = e

Show that with these definitions (and no additional assumptions), F is a field.

(7 points)
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4 Vector Spaces and Tensor Spaces

4.1 Vector Spaces

Definition 1. Let (V,+) be an additive group. Let K be a field. We define an exterior multiplication
ϕ : K × V → V that possesses the following properties:

(i) bilinearity,
(ii) associativity in the sense that ∀λ, µ ∈ K,x ∈ V, (λµ)x = λ(µx) and
(iii) ∀x ∈ X, 1Kx = x, where 1K is the multiplicative identity in K.

We then call V a vector space or linear space over K, or a K-vector space .

Remark 1. For the sake of simplicity, we assume that K is commutative, i.e., ∀λ, µ ∈ K,λµ = µλ.

Remark 2. Elements of V are called vectors, and elements of K scalars.

Example 1. Four common R-vector spaces are shown below.

Table 4.1.1. Four common R-vector spaces.

No. V The Addition on V K Operations on K The Exterior Multiplication

#1 R the ordinary + R the ordinary + and · the ordinary ·

#2 C
∀ z1, z2 ∈ C,
z1 + z2 := (z1

′ + z2
′) +

i(z1
′′ + z2

′′).
R the ordinary + and ·

∀λ ∈ R ∧ z ∈ C,
λ · z ≡ λz := λz′ + iλz′′.

#3 R2 the + defined in
Theorem 1 of 3.3 R the ordinary + and ·

∀λ ∈ R ∧ (x, y) ∈ R2,
λ(x, y) := (λx, λy).

#4 Rn
a componentwise +
similar to
the one on R2

R the ordinary + and ·
∀λ ∈ R∧x ≡ (x1, . . . , xn) ∈ Rn,
λx := (λx1, . . . , λxn).

More generally, given an arbitrary field K, we can make Kn a K-vector space by the following
definitions. We first define an addition on Kn to turn it into an additive group: ∀k ≡ (k1, . . . , kn), l ≡
(l1, . . . , ln) ∈ Kn,k + l := (k1 + l1, . . . , kn + ln). It is easy to check that (Kn,+) is a group with
neutral element (0K , . . . , 0K)︸ ︷︷ ︸

n 0K ’s

, where 0K is the additive identity in K. Kn will be further promoted to

a K-vector space if we define the exterior multiplication by ∀ k ∈ K ∧ l ∈ Kn, kl := (kl1, . . . , kln).

Remark 3. For another example, see Problem 1.4.1 (Function space).

4.2 Basis Sets

Definition 1. Let V be a K-vector space. If there exist a finite number of vectors p1, p2, . . . , pn ∈ V
such that ∀x ∈ V,∃λ1, λ2, . . . , λn ∈ K : x =

∑n
i=1 λipi, then we say that the set {pi}ni=1 spans V , and

we call V a finite-dimensional vector space.

Example 1. Let us consider R2 as an R-vector space. The set {(1, 0), (0, 2)} spans R2; so does
{(1, 0), (0, 1), (1, 1)}.
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Definition 2. If any of the n vectors p1, p2, . . . , pn can be expressed as a linear combination of the
remaining n − 1 vectors, the we call the set {pi}ni=1 linearly dependent . Otherwise, we say the n
vectors are linearly independent .

Example 2. In R2, (1, 0), (0, 1) and (1, 1) are linearly dependent.

Definition 3. A basis is a set of linearly independent vectors that spans a vector space. We call such
vectors basis vectors and denote them by e1, e2, . . . , en. If there are n basis vectors in a basis, then we
say that the corresponding vector space is n-dimensional .

Example 3. {(1, 0), (0, 2)}, {(1, 0), (0, 1)}, {(1, 0), (1, 1)} and {(0, 1), (1, 1)} are all bases of R2.

Proposition 1. Let V be a K-vector space with neutral element ϑ. Let p1, p2, . . . , pn be linearly inde-
pendent vectors. Then

n∑
i=1

λipi = ϑ =⇒ λi = 0K ∀ i ∈ {i}ni=1

where 0K is the additive identity in K.

Proof. Suppose there exists a λj 6= 0K such that
∑n
i=1 λipi = ϑ. Then λj has a multiplicative inverse,

and hence
pj = −λ−1j

∑
i 6=j

λipi

This would make p1, p2, . . . , pn linearly dependent, which contradicts our premise. Hence no such λj can
exist.

Proposition 2. Let V be a K-vector space with neutral element ϑ. Let {ei}ni=1 be a basis of V . Any
arbitrary vector x ∈ V can be written as

x =
n∑
i=1

λiei,

where {λi}ni=1 ⊆ K is a unique set of scalars that is characteristic of x.

Remark 1. We refer to the formula

x =

n∑
i=1

λiei

as “expanding x in the basis {ei}ni=1”. We say that the set of scalars {λi}ni=1 is a representation of x.
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Proof. The fact that {ei}ni=1 spans V implies that there exist λ1, λ2, . . . , λn ∈ K such that for all x ∈ V ,

x =

n∑
i=1

λiei.

Let us now show that {λi}ni=1 is unique. Suppose that x can also be written as

x =

n∑
i=1

αiei,

where α1, α2, . . . , αn ∈ K. It directly follows that

ϑ = x− x =

n∑
i=1

λiei −
n∑
j=1

αjej =

n∑
i=1

(λi − αi)ei.

Proposition 1 further implies that ∀ i, λi = αi.

Remark 2. We often use the notation λi ≡ xi and call the xi’s the components or coordinates of the
vector x in the basis {ei}ni=1. We write

x =

n∑
i=1

λiei ≡
n∑
i=1

xiei ≡ xiei.

The implied summation over pairs of upper and lower indices is called the Einstein summation conven-
tion .

Example 4. {e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, 0, . . . , 1)} is called the standard
basis of Rn.

Remark 3. Proposition 2 indicates that there is a one-to-one correspondence between any vector x ∈ V and
the n-tuple of its components. One can further show that all n-dimensional K-vector spaces are isomorphic
to Kn.

4.3 Tensor Spaces

Definition 1. Let V be a K-vector space.
(a) A mapping f : V → K is called a linear form if ∀x, y ∈ V ∧ λ ∈ K,

(i) f(x+ y) = f(x) + f(y);
(ii) f(λx) = λf(x).

(b) A mapping g : V × V → K is called a bilinear form if ∀x, y, z ∈ V ∧ λ ∈ K,
(i) g(x+ y, z) = g(x, z) + g(y, z);
(ii) g(x, y + z) = g(x, y) + g(x, z);
(iii) g(λx, y) = λg(x, y) = g(x, λy).

Remark 1. Note the relation between bilinear forms and bilinear mappings (See 3.1).

Definition 2. Let V be a K-vector space. Let {ei}ni=1 be a basis of V . Let f : V ×V → K be a bilinear
form. The scalars tij := f(ei, ej) are called the components or coordinates of f in the basis {ei}ni=1.
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Proposition 1. A bilinear form can be completely characterized by its components.

Proof. Let V be a K-vector space. Let {ei}ni=1 be a basis of V . Let f : V × V → K be a bilinear form.
Let x, y ∈ V . We have

x =

n∑
i=1

xiei ≡ xiei, and y =

n∑
j=1

yjej ≡ yjej .

It follows that

f(x, y) = f

(
n∑
i=1

xiei, y

)
≡ f(xiei, y)

=

n∑
i=1

xif(ei, y) ≡ xif(ei, y)

=
n∑
i=1

n∑
j=1

xiyjf(ei, ej) ≡ xiyjf(ei, ej) ≡ xiyjtij .

Hence, after we obtain all the components tij , the bilinear form is completely determined, because we
are able to compute f(x, y) for any arbitrary x and y.

The reader ought to appreciate the Einstein summation convention from now on, unless he or she
really relishes

∑
. For his convenience, the slothful typist will employ the Einstein summation convention

in the rest of this note.

Definition 3. Let {ei}ni=1 be a basis of a K-vector space V . Let f : V × V → K be a bilinear form.
The scalars tij = f(ei, ej) are also called the components or coordinates of a rank-2 tensor t in
the basis {ei}ni=1. A rank-2 tensor is equivalent to a bilinear form. In general, a high-rank tensor is
corresponding to a multilinear form.

Theorem 1. Let K be a field. The set of all rank-2 tensors is an n2-dimensional K-vector space.

Proof. See Problem 1.4.2 (The space of rank-2 tensors).

Example 1. Let us consider R3 with the standard basis {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}.
Recall that R3 is an R-vector space. The well-known Levi-Civita tensor or completely antisym-
metric tensor of rank 3 is the tensor corresponding to the trilinear form ε : R3×R3×R3 → R with
components ε(ei, ej , ek) = εijk, where the Levi-Civita symbol εijk is given by

εijk = sgn

(
i, j, k

1, 2, 3

)
.

Remark 2. The cross product of 3-vectors is conveniently written in terms of εijk, see Problem 1.4.3 (Cross
product of 3-vectors).
Remark 3. Notice that in Definition 3, we singled out the phrase “in the basis {ei}ni=1”. We would like to
accentuate the fact that components of a tensor depend on the basis chosen. For instance, components of
the Levi-Civita tensor in an arbitrary basis {ẽi}ni=1 are generally not given by the Levi-Civita symbol, i.e.,
ε(ẽi, ẽj , ẽk) 6= ε(ei, ej , ek) = εijk. Also, for now, note that a symbol is merely a token, i.e., the Levi-Civita
symbol is conveniently introduced to express components of the Levi-Civita tensor in the standard basis.
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Example 2. Now, let us consider Rn with the standard basis {ei}ni=1. The rank-2 tensor corresponding
to the bilinear form δ : Rn × Rn → R with components

δ(ei, ej) = δij :=

{
1, if i = j,

0, otherwise,
(4.3.1)

is called (Euclidean) Kronecker delta .

Remark 4. δij is an example of a symmetric rank-2 tensor, see Problem 1.4.4 (Symmetric tensors).

4.4 Dual Spaces
Let V be an n-dimensional K-vector space. Let {ei}ni=1 be a basis of V . Let f : V → K be a linear form.
For all x ∈ V , we have x = xiei, where xi ∈ K. It follows that

f(x) = f(xiei) = xif(ei) ≡ xiui,

where ui := f(ei) ∈ K.
Remark 1. Every linear form on V can be written in this form, i.e., the scalars ui uniquely determine the
form.
Remark 2. The set of ui, and hence the linear forms on V , form a K-vector space, denoted V ∗, that is
isomorphic to Kn and hence to V (see Theorem 1 of 4.3 and Remark 3 of 4.2).

Definition 1. Let V be an n-dimensional K-vector space. The space V ∗ of linear forms on V is called
dual to V . Elements of V ∗ are called covectors. There exists a one-to-one correspondence between
covectors (elements of V ∗) and vectors (elements of V ).

Remark 3. Covectors are defined via linear forms, in analogy to rank-n tensors being defined via n-linear
forms, hence covectors can be regarded as rank-1 tensors.

Definition 2. The scalar f(x) is called the scalar product of the vector x and covector u that corre-
sponds to the linear form f . We write x · u := xiui.

Remark 4. Covectors are also called covariant vectors, in which case vectors are referred to as contravari-
ant vectors.

Fig. 4.4.1. A summary of various isomorphisms.
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Remark 5. Because V ∗ ∼= V , there is no need to distinguish between them. We can define the covariant
components of a vector y to be the components of its corresponding covector u under isomorphism, i.e.,
yi := ui. Components of y itself, yi are called its contravariant components. As a result, we can write
the scalar product as x · u ≡ x · y = xiyi. We will revisit these concepts in 4.8.

Remark 6. Now, we are able to expand a vector x in two different ways: xiei = x = xie
i. The set of covectors

{ei}ni=1 is a basis of V ∗ that is corresponding to {ei}ni=1. We call it a cobasis.

Remark 7. We can further define the scalar product

ei · ej =: δij =

{
1, if i = j,

0, otherwise.
(4.4.1)

Notice the subtle difference between Eqs. (4.3.1) and (4.4.1): the latter holds for any arbitrary basis and its
corresponding cobasis, while the former is only valid for the standard basis.

Remark 8. In quantum mechanics, we often use |x〉 and 〈y| to denote vectors and covectors, respectively.
The scalar product is written as 〈y|x〉 = yix

i.

Definition 3.
(a) A bilinear form f : V ∗ × V ∗ → K is equivalent to a contravariant tensor of rank 2 whose

components are given by tij := f(ei, ej). In general, a multilinear form from a Cartesian product of V ∗’s
to K is corresponding to a high-rank contravariant tensor.

(b) As its name suggests, a mixed tensor of rank 2 is corresponding to a bilinear form f :
V × V ∗ → K (or f : V ∗ × V → K). A high-rank mixed tensor can be defined in a similar way, e.g.,
f : V ∗ × V × V ∗ → K is equivalent to a rank-3 mixed tensor with components ti j k := f(ei, ej , e

k).

Example 1. δij in Remark 6 is a mixed tensor of rank 2.

Remark 9. Like covectors, vectors can be regarded as rank-1 contravariant tensors.

Remark 10. Like vectors, covectors also have both contravariant and covariant components.

Remark 11. The covariant components of a cobasis vector ei are given by δij , since δijej = ei = (ei)je
j .

Similarly, δij captures the contravariant components of a basis vector ei, because δijej = ei = (ei)
jej . We

have thus established δij = δi
j . Because there is no need to distinguish between them, we can just employ

the symbol δji instead.

Definition 4. Let x and y be two contravariant vectors. The tensor product of x and y yields a
contravariant tensor whose components equal the product of the two vectors’ components, i.e., tij := xiyj .
We write t = x⊗ y.

Remark 12. Although V ∼= V ∗, we do not yet know the isomorphism explicitly. Nevertheless, Euclidean space
is an exception: in this space, there is no need to distinguish between being contravariant and covariant.

Remark 13. We have frequently used “contravariant” and “covariant” in this section. The reader probably
gets a little bit bewildered. In fact, these two terms only appear in mainly two aspects, namely categories
of tensors and components of vectors. We often characterize a tensor by its components: if a tensor’s
components are only labelled by upper (lower) indices, then the tensor is a contravariant (covariant) tensor.
The same rule applies to vectors, since they can be regarded as rank-1 tensors. However, as we previously
discussed, vectors have both contravariant and covariant components. This indicates that a vector can be
both contravariant and covariant.
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Fig. 4.4.2. Contravariant and covariant components of a vector x.

4.5 Metric Spaces

Definition 1. LetM be a set. Let ρ : M×M → R be a mapping. If ρ possesses the following properties:
∀x, y, z ∈M ,

1. ρ(x, y) > 0 ∧ (ρ(x, y) = 0 ⇐⇒ x = y); (positive semidefiniteness)
2. ρ(x, y) = ρ(y, x); (symmetry)
3. ρ(x, z) 6 ρ(x, y) + ρ(y, z), (triangle inequality)

we will call M a metric space with the metric ρ.

Remark 1. A set with a designated metric defines a metric space.

Example 1. Let M = R. We can define a metric on M : ∀x, y ∈M ,

ρ(x, y) = |x− y| :=

{
x− y, if x > y,

y − x, otherwise.

The reader ought to verify that such a ρ satisfies the three properties in Definition 1 (See Problem
1.4.5).

Definition 2. Let M be a metric space with metric ρ. Let (an)n∈N ⊆ M be an infinite sequence. We
say that L ∈ M is the limit of the sequence (or the sequence converges to L), if ∀ ε > 0,∃N ∈ N :
∀n > N, ρ(an, L) < ε. We write lim

n→∞
an = L, an → L or lim

n→∞
ρ(an, L) = 0.

Proposition 1. A sequence has at most one limit.

Proof. See Problem 1.4.6.

Definition 3. Let M be a metric space with metric ρ. An infinite sequence (an)n∈N ⊆ M is called a
Cauchy sequence if it satisfies the Cauchy condition :

∀ ε > 0,∃N ∈ N : ∀m,n > N, ρ(am, an) < ε.

Remark 2. For Cauchy sequences, we write lim
m,n→∞

ρ(am, an) = 0, or simply ρ(am, an)→ 0.
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Proposition 2. Every convergent sequence is a Cauchy sequence.

Proof. See Problem 1.4.6.

Remark 3. The converse of Proposition 2 is not true in a general metric space.

Example 2. Let M = Q with the metric defined in Example 1 and an =
(
1 + 1

n

)n. an is divergent,
since lim

n→∞
an = e 6∈ Q.

Proposition 3. Let M = R with the metric defined in Example 1. Every Cauchy sequence in M is
convergent.

Sketch of Proof.
(i) Firstly, we need to show that every Cauchy sequence is bounded. This follows from the Cauchy

condition.
(ii) Secondly, we establish that a Cauchy sequence is convergent if and only if it has a convergent subse-

quence.
(iii) Finally, we employ Bolzano-Weierstrass theorem that every bounded sequence in R has a con-

vergent subsequence to complete the proof.

Definition 4. A metric space M is called complete if every Cauchy sequence in M converges.

Remark 4. In Example 2, we saw that Q is not complete.

Proposition 4. An incomplete metric space M can be completed by adding an appropriate set. The
completion of M is unique up to isomorphism.

We omit the proof, because it is beyond the level of this course.

Example 3. R is a completion of Q.

4.6 Banach Spaces

Definition 1. Let B be an R-vector space (or a C-vector space) with null vector ϑ. Let ‖·‖ : B → R be
a mapping. If ‖·‖ possesses the following properties: ∀x, y ∈ B ∧ a ∈ R (or C),

1. ‖x‖ > 0 ∧ (‖x‖ = 0 ⇐⇒ x = ϑ); (positive semidefiniteness)
2. ‖x+ y‖ 6 ‖x‖+ ‖y‖; (triangle inequality)
3. ‖ax‖ = |a| ‖x‖, (linearity)

we will call ‖·‖ a norm on B.
The image of a vector x ∈ B, ‖x‖ is called its norm . The norm of the difference of two vectors

x, y ∈ B, ‖x− y‖ =: d(x, y) is called the distance between x and y.

Remark 1. d : B × B → R defines a metric on B. The reader ought to verify that d satisfies the three
properties in Definition 1 of 4.5. There exist other metrics.
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Remark 2. Let x ∈ B. Notice that ‖x‖ = ‖x− ϑ‖ = d(x, ϑ).

Remark 3. As we saw, a normed vector space is a metric space. However, for an arbitrary set, the existence
of a metric does not imply that a norm also exists.

Remark 4. Every linear space over R (or C) with a norm is a metric space.

Definition 2. A linear space over R (or C) with a norm that is complete is called a Banach space , or
simply B-space .

Example 1. As a vector space, R with the norm given by ‖x‖ := |x| (x ∈ R) is a Banach space.
Similarly, C with ‖z‖ := |z| =

√
z12 + z22 (z = z1 + iz2 ∈ C) is also a B-space.

Definition 3. Let B be a Banach space over C. Let ` : B → C be a linear form (See Definition 1, (a)
of 4.3). Let x ∈ B. The norm of ` is defined as

‖`‖ := sup
‖x‖=1

{
|`(x)|

}
.

Remark 5. The vector space of linear forms on B, B∗ is the dual vector space to B (See Definition 1 of
4.4).

Proposition 1. The norm of linear forms defines a norm on B∗.

Proof. See Problem 1.4.7.

Theorem 1. B∗ is complete and hence a B-space.

We omit the proof, because it is beyond the level of this course. The interested reader might want to consult
A Course of Higher Mathematics, Vol. 5 by V. I. Smirnov.

4.7 Hilbert Spaces

Definition 1. Let H be a linear space over C with null vector ϑ. Let (·, ·) : H ×H → C be a mapping
that possesses the following properties: ∀x, y, z ∈ H ∧ λ ∈ C,

(i) (x, y) = (y, x)∗; (symmetry)
(ii) (x, x) > 0 ∧ ((x, x) = 0 ⇐⇒ x = ϑ); (positive semidefiniteness)
(iii) (x+ y, z) = (x, z) + (y, z);
(iv) (λx, y) = λ∗(x, y).

The norm of a vector x ∈ H is defined by ‖x‖ :=
√

(x, x).

Remark 1. The mapping (·, ·) is usually called a scalar product on H.

Remark 2. Note the subtle difference between the scalar product and bilinear forms (See Definition 1, (b)
of 4.3).
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Lemma 1. For x, y ∈ H,
|(x, y)|2 6 (x, x)(y, y).

The inequality is named Cauchy-Schwarz inequality (also known as Bunyakovsky inequality).

Proof. Obviously, the inequality holds when either x or y is the null vector. Let x, y 6= ϑ. As a result,
(x, x), (y, y) > 0. Let us define

z := x− (y, x)

(y, y)
y.

Notice that
(z, y) =

(
x− (y, x)

(y, y)
y, y

)
= (x, y)− (y, x)∗

(y, y)∗
(y, y) = (x, y)− (y, x)∗ = 0.

Now, let us compute (x, x):

(x, x) =

(
z +

(y, x)

(y, y)
y, z +

(y, x)

(y, y)
y

)
= (z, z) +

(
z,

(y, x)

(y, y)
y

)
+

(
(y, x)

(y, y)
y, z

)
+

(
(y, x)

(y, y)
y,

(y, x)

(y, y)
y

)
= (z, z) +

(y, x)

(y, y)
(z, y) +

(y, x)∗

(y, y)∗
(z, y)∗ +

|(y, x)|2

(y, y)2
(y, y)

= (z, z) +
|(y, x)|2

(y, y)
.

Because of positive semidefiniteness, we have

(x, x) >
|(y, x)|2

(y, y)
,

which implies the Cauchy-Schwarz inequality.

Remark 3. A similar inequality exists for any scalar product defined on an arbitrary linear space. (·, ·) on H
is a particular instance.

Proposition 1. The norm in Definition 1 is indeed a norm (See Definition 1 of 4.6).

Proof. See Problem 1.4.8.

Definition 2. Let x, y ∈ H. A metric on H can be defined by ρ(x, y) := ‖x− y‖ =
√

(x− y, x− y).

Proposition 2. The metric in Definition 2 satisfies the three properties in Definition 1 of 4.5.

The proof is straightforward and thus left as an exercise to the reader.
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Definition 3. A complete H is called a Hilbert space , or simply an H-space .

Remark 4. Every H-space is a B-space.

Definition 4. Let y ∈ H be given. We can define a linear form ` : H → C by `(x) := (y, x) for all
x ∈ H.

Proposition 3. The linear form in Definition 4 is indeed a linear form (See Definition 1 of 4.3).

Proof. See Problem 1.4.8.

Proposition 4. Every linear form on H can be expressed in the form of `(x), i.e., ∀ ` : H → C,∃! y ∈
H : ∀x ∈ H, `(x) = (y, x).

We omit the proof, because it is beyond the level of this course.

Corollary 1. Like B-spaces, the vector space of linear forms on H, H∗ is the dual vector space to H
(See Definition 1 of 4.4). H∗ is isomorphic to H. What is more, H∗ itself is an H-space.

Like before, we omit the proof, because it is beyond the level of this course.

Definition 5. Let ` ∈ H∗ with the corresponding vector y ∈ H. We can define a mapping 〈·|·〉 :
H∗ ×H → C by 〈`|x〉 := `(x) = (y, x) for all x ∈ H.

Remark 5. For each ` ∈ H∗, there exists a unique y ∈ H such that 〈`|x〉 = `(x) = (y, x).

Remark 6. Because H∗ ∼= H, there is no need to distinguish between them. We sloppily write 〈y|x〉 :=
〈`|x〉 = (y, x). Note that 〈y| is a linear functional, which takes a vector and returns a complex number.

Remark 7. In quantum mechanics, states of a system are represented by elements of a Hilbert space.

4.8 Generalized Metrics and Minkowski Spaces
4.8.1 Scalar Products

Definition 1. Let V be an n-dimensional R-vector space. Let {ei}ni=1 be a basis. Let g : V × V → R
be a symmetric bilinear form, i.e., ∀x, y ∈ V, g(x, y) = g(y, x). g corresponds to a symmetric rank-2
tensor whose components are given by gij = g(ei, ej) = g(ej , ei) = gji. Let g have an inverse g−1 with
components (g−1)ij = gij , where gijgjk = δki .

Let x, y ∈ V . We call the real number g(x, y) ≡ x · y ≡ xy = xigijy
j the (generalized) scalar

product of x and y. g is called the (generalized) metric, or equivalently the metric tensor .

Remark 1. The metric in Definition 1 is not the same as the one defined in 4.5. For instance, positive
semidefiniteness can be violated, i.e., ∃x, y ∈ V : g(x, y) < 0; it is even possible that g(x, x) < 0.

Remark 2. Recall that the R-vector space V is isomorphic to Rn (See Remark 3 of 4.2). Therefore, in the
rest of this section, we will just consider Rn with a metric g instead of a general R-vector space.
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Definition 2. An adjoint basis (or a cobasis) {ei}ni=1 is a set of cobasis vectors ei := gijej .

Remark 3. Such defined ei’s are vectors in V , while cobasis vectors in 4.4 are elements of V ∗. However,
because V ∼= V ∗, we can obscure the difference here by defining cobasis vectors in V .
Remark 4. The relation between ei and ej is given by

ei = δki ek = (gijg
jk)ek = gij(g

jkek) = gije
j .

Definition 3. Let x ∈ V be given. Coordinates of x in a basis {ei}ni=1, xi are called contravariant .
Coordinates of x in the cobasis {ei}ni=1, xi are called covariant .

Fig. 4.4.2. Contravariant and covariant components of a vector x.

Remark 5. So far, all the definitions in this section are consistent with the ones in 4.4. However, we have
now specified a relation between bases and cobases (See Remark 11 of 4.4).

Proposition 1. Let x ∈ V . The contravariant and covariant components of x are related by

xi = gijx
j , and xi = gijxj .

Proof. For the first equality, we have

xie
i = x = xjej = xj(gjie

i) = (xjgji)e
i = (gijx

j)ei,

which implies xi = gijx
j . For the second,

xi = δikx
k = (gijgjk)xk = gij(gjkx

k) = gijxj .

Corollary 1. Let x, y ∈ V . The scalar product of x and y can now be written as

g(x, y) = xigijy
j =

{
(xigij)y

j = xjy
j

xi(gijy
j) = xiyi.

Remark 6. The form of the scalar product in Corollary 1 is consistent with Remark 4 of 4.4.
Remark 7. According to Eq. (4.4.1),

g(ei, ej) = gij = ei · ej = δij 6= δij = gikδ
k
j = gij .

In Euclidean space, δij = δij . We will revisit this concept in 4.8.3.
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4.8.2 Basis Transformations

Definition 4. A real m×n matrix D is a rectangular array of real numbers in m rows and n columns:

D =


D1

1 D1
2 D1

3 · · · D1
n

D2
1 D2

2 D2
3 · · · D2

n

...
...

...
...

...
Dm

1 Dm
2 Dm

3 · · · Dm
n

 .

The Di
j ’s are called matrix elements. In this course, we mainly consider real square matrices, i.e.,

real matrices with an equal number of rows and columns.
(i) A square matrixD is invertible if there exists another square matrixD−1 such thatDi

j(D
−1)jk =

(D−1)ijD
j
k = δik. We also write DD−1 = D−1D = 1n, where 1n is the n× n identity matrix

n rows





1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1



n columns︷ ︸︸ ︷

≡ diag{1, 1, . . . , 1︸ ︷︷ ︸
n 1’s

}.

(ii) The transpose of anm×n matrix D, DT is an n×m matrix with matrix elements (DT )ij = Dj
i.

(iii) The product of an l × m matrix A and an m × n matrix B is an l × n matrix with matrix
elements (AB)ij := AikB

k
j .

(iv) The determinant of an n× n square matrix D is a number defined by

detD ≡

∣∣∣∣∣∣∣∣∣∣∣∣

D1
1 D1

2 D1
3 · · · D1

n

D2
1 D2

2 D2
3 · · · D2

n

D3
1 D3

2 D3
3 · · · D3

n

...
...

...
. . .

...
Dn

1 Dn
2 Dn

3 · · · Dn
n

∣∣∣∣∣∣∣∣∣∣∣∣
=:
∑
π∈Sn

(
sgnπ

n∏
i=1

Di
π(i)

)
,

where Sn is the symmetric group (See Proposition 1 of 2.3).

Remark 8. Matrix elements are not like components of a tensor: we usually do not distinguish between upper
and lower indices. For matrices, the distinction is only important when Einstein summation convention is
involved. Therefore, for a matrix D, we can usually write Di

j = Dij = Di
j = Dij . It is crucial to tell the

difference between row and column indices though.

Example 1. Let us consider a general 2× 2 matrix D and compute its determinant:

detD =

∣∣∣∣D1
1 D1

2

D2
1 D2

2

∣∣∣∣ =
∑
π∈S2

(
sgnπ

2∏
i=1

Di
π(i)

)

= sgn

(
1, 2

1, 2

) 2∏
i=1

Di
(1,2
1,2)(i)

+ sgn

(
1, 2

2, 1

) 2∏
j=1

Dj
(1,2
2,1)(j)

= 1 ·D1
1 ·D2

2 + (−1) ·D1
2 ·D2

1 = D1
1D

2
2 −D1

2D
2
1.
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Proposition 2. Let A, B and D be matrices. We have
(i) (AB)T = BTAT ;
(ii) (D−1)T = (DT )−1;
(iii) det(AB) = detA · detB;

(iv) det
(
D−1

)
=

1

detD
;

(v) det
(
DT
)

= detD.

Proof. For (i) and (ii), we will just write symbolic expressions.
(i)
(
(AB)T

)i
j

= (AB)j
i

= Aj
kBk

i = (AT )kj(B
T )ik = (BT )ik(AT )kj = (BTAT )ij

(ii) DT (D−1)T = (D−1D)T = 1n
T = 1n

(D−1)TDT = (DD−1)T = 1n
T = 1n

∴ (D−1)T = (DT )−1

For (iii), (iv) and (v), please consult A Course of Higher Mathematics, Vol. 3 by V. I. Smirnov.

Definition 5. Let us consider Rn. Let {ei}ni=1 be a basis. Let D be an invertible n×n real matrix. We
can define a second basis {ẽi}ni=1 by the basis transformation ẽi := ej(D

−1)ji.

Remark 9. The inverse basis transformation is given by

ei = ekδ
k
i = ek

(
(D−1)kjD

j
i

)
=
(
ek(D−1)kj

)
Dj

i = ẽjD
j
i.

Proposition 3. {ẽi}ni=1 is indeed a basis (See Definition 3 of 4.2).

Proof. To show that {ẽi}ni=1 is a basis, we need to establish that ẽ1, ẽ2, . . . , ẽn are linearly independent
and span the R-vector space Rn. Let x ∈ Rn. From Remark 9 it follows that

x = xjej = xj(ẽiD
i
j) = (Di

jx
j)ẽi := x̃iẽi, (4.8.1)

i.e., {ẽi}ni=1 spans Rn. Now, let {λ̃i}ni=1 ⊂ R. Let us consider the sum S = λ̃iẽi. According to
Definition 5, we have

S = λ̃iẽi = λ̃i(ej(D
−1)ji) = ((D−1)jiλ̃

i)ej := λjej .

The fact that {ei}ni=1 is a basis implies that S = 0⇒ λi = 0 (i ∈ {i}ni=1). Furthermore, because D−1 is
invertible, λ̃i = 0 (i ∈ {i}ni=1). We have thus shown that ẽ1, ẽ2, . . . , ẽn are linearly independent.

Proposition 4. Let x ∈ Rn be a vector with components xi in the basis {ei}ni=1. In the basis {ẽi}ni=1,
components of x are given by x̃i = Di

jx
j.

Proof. See Eq. (4.8.1).

Remark 10. The inverse relation is xi = (D−1)ij x̃
j .

Remark 11. Such a D applied on components of a vector is called a coordinate transformation .
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Proposition 5. Let gij = ei · ej be the metric associated with the basis {ei}ni=1. Let D−1 be a basis
transformation ẽi = ej(D

−1)ji. The metric that corresponds to the new basis {ẽi}ni=1 is given by

g̃ij =
(
(D−1)T

)
i

k
gk`(D

−1)`j (or g̃ = (D−1)T gD−1).

The inverse relation is g = DT g̃D.

Proof. For this proof, we will just write symbolic expressions.
(1)

g̃ij = ẽi · ẽj = ek(D−1)ki · e`(D
−1)`j =

(
(D−1)T

)
i

k
(ek · e`)(D−1)`j =

(
(D−1)T

)
i

k
gk`(D

−1)`j

(2)

g̃ = (D−1)T gD−1

DT g̃D = DT (D−1)T gD−1D

g = DT g̃D

4.8.3 Normal Coordinate Systems

Lemma 1. For all invertible n× n symmetric matrices M = MT with complex matrix elements, there
exists a matrix D such that M = DTMD = diag{m1,m2, . . . ,mn}, where m1,m2, . . . ,mn are nonzero
complex numbers.

This is called (finite-dimensional) spectral theorem . We omit the proof, because it is well-established;
the reader will be able to find the proof in general textbooks on linear algebra.

Corollary 2. Let gij be a metric on Rn. Recall that g can be represented by an invertible real symmetric
matrix. According to Lemma 1, there exists a transformation such that g̃ij = λi · δij (the · indicates
that this is not a summation), where δij is the Euclidean Kronecker delta, and λi’s are nonzero complex
numbers.

Theorem 1. Let gij be a metric on Rn. There exists a transformation such that

g∗ = diag{1, . . . , 1︸ ︷︷ ︸
m 1’s

,−1, . . . ,−1︸ ︷︷ ︸
n−m −1’s

} (0 6 m 6 n). (4.8.2)
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Proof. Corollary 2 ensures the existence of a transformation such that g̃ij = λi · δij , where δij is the
Euclidean Kronecker delta, and λi 6= 0 (i ∈ {i}ni=1). To complete the proof, we would like to first
permute the order of basis vectors so that λ1, λ2, . . . , λm > 0, and λm+1, λm+2, . . . , λn < 0. Now, let us
define a second transformation by the symmetric matrix

(D−1)ij :=
1√
|λi|
· δij .

According to Proposition 5, the new metric is given by

˜̃gij =
(
(D−1)T

)
i

k
g̃k`(D

−1)`j

=

(
1√
|λi|
· δki

)
(λk · δk`)

(
1√
|λ`|
· δ`j

)

=
λk√
|λiλ`|

· δki δk`δ`j =
λi√
|λiλ`|

· δi`δ`j =
λi√
|λiλj |

· δij

=
λi
|λi|
· δij =

{
δij , if i 6 m,

−δij , if m < i 6 n,

as desired.

Definition 6. If the metric corresponding to a basis is of the form in Eq. (4.8.2), we will call the basis
a normal coordinate system .

Remark 12. The integer m in Eq. (4.8.2) is characteristic of the vector space and remains invariant under
basis transformations. This is an implication of Sylvester’s rigidity theorem .

Example 2. Let m = n in Eq. (4.8.2). We have g = 1n. One can further check that gij = δij is
compatible with Definition 1 of 4.5. The R-vector space, Rn with the metric 1n is named the n-
dimensional Euclidean space , denoted En. In En, normal coordinate systems are called Cartesian
coordinate systems. Notice that for any x ∈ En,

xi = δijx
j = gijx

j = xi,

i.e., there is no need to distinguish between being contravariant and covariant in Euclidean space (See
Remark 11 of 4.4).

Example 3. Now, let m = 1 and n > 2. In this case, we have g = diag{1,−1, . . . ,−1︸ ︷︷ ︸
n−1 −1’s

} that is a

generalized metric. Rn with the metric g is called the n-dimensional Minkowski space Mn. In
this space, normal coordinate systems are called inertial coordinate frames. It is straightforward
to show that for any x ∈Mn, its contravariant and covariant components are related by

xi =

{
xi, if i = 1,

−xi, if 1 < i 6 n.
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Remark 13. One formulation of the special relativity is based on the postulate that classical mechanical
systems can be described as collections of particles moving in the space M4. Let x ∈M4. As physicists, we
often use the notation x = (x0, x1, x2, x3) := (ct,x), where ct is the temporal component of the four-vector
x, and x the spatial component. Thereinto, c is a characteristic velocity, namely the speed of light in vacuum.

4.8.4 Normal Coordinate Transformations

Definition 7. A coordinate transformation D is normal if it transforms one normal coordinate system
into another. In other words, the metric of the form in Eq. (4.8.2) is invariant under a normal coordinate
transformation, i.e.,

gij = g̃ij =
(
(D−1)T

)
i

k
gk`(D

−1)`j (or g = g̃ = (D−1)T gD−1),

which implies that g = DT gD.

Example 4. Let D be a normal coordinate transformation in the n-dimensional Euclidean space.
Recall that in En, g = 1n. According to Definition 7, D must satisfy the relation

1n = DT
1nD = DTD.

We call such a D orthogonal .

Example 5. In Mn, normal coordinate transformations are called Lorentz transformations.

Lemma 2.
(i) The inverse of a normal coordinate transformation is also normal.
(ii) The product of two normal coordinate transformations is normal as well.

Proof. Let g be a metric of the form in Eq. (4.8.2).
(i) See Definition 7.
(ii) Let D1 and D2 be normal coordinate transformations. By definition, we have

g = D1
T gD1, and g = D2

T gD2.

Combining the two equalities, we obtain

g = D1
T
(
D2

T gD2

)
D1 =

(
D1

TD2
T
)
g(D2D1) = (D2D1)T g(D2D1).
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Theorem 2. All the normal coordinate transformations for a specific metric form a non-abelian group
under matrix multiplication.

Proof. To complete the proof, we need to check that the set of all the normal coordinate transformations
satisfies the four group axioms:

(i) closure is satisfied because of Lemma 2, (ii);
(ii) matrix multiplication is associative;
(iii) the identity matrix 1n always serves as the multiplicative identity;
(iv) existence of inverses is due to Lemma 2, (i).

Remark 14. The group of all the normal coordinate transformations in En is called the orthogonal group,
denoted O(n). InMn, the group of all the Lorentz transformations is called the pseudo-orthogonal group,
denoted O(1, n− 1).

Proposition 6. Let g be a metric of the form in Eq. (4.8.2). Let D be a normal coordinate transfor-
mation. We have detD = ±1.

Proof. According to Definition 7, we have

g = DT gD

det g = det
(
DT gD

)
= det

(
DT
)
· det g · detD

1 = (detD)2

detD = ±1.

4.9 Problems
1.4.1 Function space

Consider the set C of continuous functions f : [0, 1]→ R. Show that by suitably defining an addition on C,
and a multiplication with real numbers, one can make C an additive vector space over R.

(2 points)

1.4.2. The space of rank-2 tensors

a) Prove the theorem of ch.1 §4.3: Let V be a vector space V of dimension n over K. Then the space of
rank-2 tensors, defined via bilinear forms f : V × V → K, forms a vector space of dimension n2.

b) Consider the space of bilinear forms f on V that is equivalent to the space of rank-2 tensors, and construct
a basis of that space.

hint: On the space of tensors, define a suitable addition and multiplication with scalars, and construct a
basis of the resulting vector space.

(5 points)

1.4.3. Cross product of 3-vectors

Let x, y ∈ R3 be vectors, and let εijk be the Levi-Civita symbol. Show that the (covariant) components of
the cross product x× y are given by

(x× y)i = εijkx
jyk
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(1 point)

1.4.4. Symmetric tensors

Let V be an n-dimensional vector space over K with some basis, let f : V × V → K be a bilinear form, and
let t be the rank-2 tensor defined by f . Show that f is symmetric, i.e. f(x, y) = f(y, x) ∀x, y ∈ V , if and
only if the components of the tensor with respect to the given basis are symmetric, i.e., tij = tji.

(2 points)

1.4.5. R as a metric space

Consider the reals R with ρ : R × R → R defined by ρ(x, y) = |x − y|. Show that this definition makes R a
metric space.

(3 points)

1.4.6. Limits of sequences

a) Show that a sequence in a metric space has at most one limit.

hint: Assume there are two limits, and use the triangle inequality to show that they must be the same.

b) Show that every sequency with a limit is a Cauchy sequence.

(3 points)

1.4.7. Banach space

Let B be a K-vector space (k = R or C) with null vector θ. Let || . . . || : B→ R be a mapping such that
(i) ||x|| ≥ 0 ∀ x ∈ B, and ||x|| = 0 iff x = θ.
(ii) ||x+ y|| ≤ ||x||+ ||y|| ∀ x, y ∈ B.
(iii) ||λx|| = |λ| · ||x|| ∀ x ∈ B, λ ∈ K.

Then we call || . . . || a norm on B, and ||x|| the norm of x.

Further define a mapping d : B× B→ R by
d(x, y) := ||x− y|| ∀ x, y ∈ B

Then we call d(x, y) the distance between x and y.

a) Show that d is a metric in the sense of §4.5, i.e., that every linear space with a norm is in particular a
metric space.

If the normed linear space B with distance/metric d is complete, then we call B a Banach space or B-space.

b) Show that R and C, with suitably defined norms, are B-spaces. (For the completeness of R you can refer
to §4.5 example (3), and you don’t have to prove the completeness of C unless you insist.)

Now let B∗ be the dual space of B, i.e., the space of linear functionals ` on B, and define a norm of ` by
||`|| := sup||x||=1 {|`(x)|}

c) Show that the such defined norm on B∗ is a norm in the sense of the norm defined on B above.

(In case you’re wondering: B∗ is complete, and hence a B-space, but the proof of completeness is difficult.)
(5 points)

1.4.8. Hilbert space

a) Show that the norm on a Hilbert space defined by §4.7 def. 1 is a norm in the sense of the definition in
Problem 19.

hint: Use the Cauchy-Schwarz inequality (§4.7 lemma).
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b) Show that the mappings ` defined in §4.7 def. 4 are linear forms in the sense of §4.3 def. 1(a).

(3 points)

1.4.9. Lorentz transformations in M2

Consider the 2-dimensional Minkowski space M2 with metric gij =

(
1 0
0 −1

)
and 2 × 2 matrix represen-

tations of the pseudo-orthogonal group O(1, 1) that leaves g invariant.

a) Let σ, τ = ±1, and φ ∈ R. Show that any element of O(1, 1) can be written in the form

Dσ,τ (φ) =

(
1 0
0 τ

)(
coshφ sinhφ
sinhφ coshφ

)(
σ 0
0 1

)

To study O(1, 1) it thus suffices to study the matrices D(φ) := D+1,+1 =

(
coshφ sinhφ
sinhφ coshφ

)
.

b) Show explicitly that the set {D(φ)} forms a group under matrix multiplication (which is a subgroup of
O(1, 1) that is sometimes denoted by SO+(1, 1)), and that the mapping φ→ D(φ) defines an isomorphism
between this group and the group of real numbers under addition.

c) Show that there exists a matrix J (called the generator of the subgroup) such that every D(φ) can be
written in the form

D(φ) = eJφ

and determine J explicitly.

(6 points)

1.4.10. Time-like and space-like intervals

Consider two points (ctx, x
1, x2, x3) and (cty, y

1, y2, y3) in Minkowski space. The interval between the two
points is called time-like if

c2(tx − ty)2 > (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 ,

and space-like if
c2(tx − ty)2 < (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 .

Show that in interval that is time-like or space-like in some inertial frame is also time-like or space-like in
any other inertial frame. (This reflects the invariance of the speed of light.)

(2 points)

1.4.11. Special Lorentz transformations in M4

Consider the Minkowski space M4.

a) Show that the following transformations are Lorentz transformations:

i) Dµ
ν =

(
1 0
0 Rij

)
≡ Rµν (rotations)

where Rij is any Euclidian orthogonal transformation.

ii) Dµ
ν =


coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1

 ≡ Bµν (Lorentz boost along the x-direction)

with α ∈ R.
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iii) Dµ
ν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ≡ Pµν (parity)

iv) Dµ
ν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ≡ Tµν (time reversal)

b) Let L be the group of all Lorentz transformations. Show that the rotations defined in part a) i) are a
subgroup of L, and so are the Lorentz boosts defined in part a) ii).

c) Let Iµν = δµν be the identity transformation. Show that the sets {I, P}, {I, T}, and {I, P, T, PT} are
subgroups of L.

(4 points)

1.4.12. General Lorentz transformations in M4

Let D be a general Lorentz transformation in M4.

a) Show that |D0
0| ≥ 1, and that (D0

1)2 + (D0
2)2 + (D0

3)2 = (D1
0)2 + (D2

0)2 + (D3
0)2.

b) Let L++ = {D ∈ L; detD > 0, D0
0 > 0}. (This is called the set of proper orthochronous Lorentz

transformations, and one can show that it is a subgroup of L.) Show that any Lorentz transformation
can be written as an element of L++ followed by either P , or T , or PT . It thus suffices to study L++.

c) Show that any element of L++ can be written as a spatial rotation R(Φ,Θ,Ψ) followed by a Lorentz
boost B(α) followed by a rotation about the 3-axes followed by a rotation about the 2-axis. In a
symbolic notation:

D =

(
1 0
0 R2(φ)R3(θ)

)
B(α)

(
1 0
0 R(Φ,Θ,Ψ)

)
L++ is thus characterized by six parameters: 3 Euler angles Φ,Θ,Ψ, the boost parameter α, and two
additional rotation angles φ and θ.

(7 points)
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5 Tensor Fields

5.1 Tensor Fields

Definition 1. Let us consider the R-vector space Rn with a generalized metric. Let D be a normal
coordinate transformation. A tensor field is a mapping that assigns each x ∈ Rn a rank-N tensor
ti1,i2,...,iN (x), which transforms under D in the following way: x̃ = Dx, and

t̃i1,i2,...,iN (x̃) =
(
Di1

j1D
i2
j2 · · ·DiN

jN

)
tj1,j2,...,jN (x) =

(
N∏
k=1

Dik
jk

)
tj1,j2,...,jN (x).

Remark 1. The field in Definition 1 is not the same as the one defined in 3.2.

Proposition 1. Homogeneous tensor fields, i.e., ∀x ∈ Rn, ti1,...,iN (x) = ti1,...,iN , are consistent with
Definition 3 of 4.3.

Proof. Let f : Rn × Rn × · · · × Rn︸ ︷︷ ︸
N Rn’s

→ R be a multilinear form. Let {ei}ni=1 be a normal coordinate

system. Let D−1 be a normal coordinate transformation ẽi = ej(D
−1)ji. For any x1, . . . , xN ∈ Rn, we

have

f(x1, . . . , xN ) = f
(

(x1)j1e
j1 , . . . , (xN )jN e

jN
)

= f
(

(x̃1)i1 ẽ
i1 , . . . , (x̃N )iN ẽ

iN
)

= (x1)j1 · · · (xN )jN f
(
ej1 , . . . , ejN

)
= (x̃1)i1 · · · (x̃N )iN f

(
ẽi1 , . . . , ẽiN

)
= (x1)j1 · · · (xN )jN t

j1,...,jN = (x̃1)i1 · · · (x̃N )iN t̃
i1,...,iN .

Let gij be the metric corresponding to {ei}ni=1 and {ẽi}ni=1. Now, notice that

xj = gjix
i = gji(D

−1)ikx̃
k =

(
gD−1

)
jk
x̃k =

(
DT g

)
jk
x̃k = (DT )j

i
gikx̃

k = Di
j x̃i,

which further implies that

(x̃1)i1 · · · (x̃N )iN t̃
i1,...,iN = (x1)j1 · · · (xN )jN t

j1,...,jN = Di1
j1 · · ·DiN

jN (x̃1)i1 · · · (x̃N )iN t
j1,...,jN .

By comparison, we conclude that

t̃i1,...,iN =
(
Di1

j1 · · ·DiN
jN

)
tj1,...,jN ,

as desired.

Remark 2. Proposition 1 implies that all tensors must transform in the same way as homogeneous tensor
fields under a normal coordinate transformation. As physicists, we often define tensors by means of this
transformation property without referring to multilinear forms.

Remark 3. In an n-dimensional vector space, a rank-N tensor can be regarded as a set of nN scalars ti1,...,iN
that are associated with a basis and possess the transformation property.

Example 1. A vector x is a rank-1 tensor, because for any arbitrary coordinate transformation D,
x̃i = Di

jx
j .
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Example 2. Metric tensors are indeed tensors, since for any coordinate transformation D,

g̃ij =
(
g̃−1

)
ij

=
(
Dg−1DT

)
ij

= Di
k(g−1)k`(D

T )`j = Di
kDj

`(g−1)k` = Di
kD

j
`g
k`.

Remark 4. Metric tensors of the form in Eq. (4.8.2) are special, since for any normal coordinate transforma-
tion, g̃ = g; nevertheless, they still possess the transformation property.

Example 3. Let us apply the criterion to check whether or not the Levi-Civita tensor is a tensor. Let
{ei}ni=1 and {ei}ni=1 be a basis and its corresponding cobasis, respectively. Let D−1 be a coordinate
transformation ẽi = ej(D

−1)ji. The relation between ẽi and ej is given by ẽi = Di
je
j , because for any

x ∈ Rn,
x̃iẽ

i = x = xje
j = (Di

j x̃i)e
j = x̃i(D

i
je
j).

Now, we are able to compute components of the Levi-Civita tensor in the new cobasis {ẽi}ni=1:

(ε̃L)ijk = ε(ẽi, ẽj , ẽk) = ε(Di
`e
`, Dj

me
m, Dk

ne
n) = Di

`D
j
mD

k
nε(e

`, em, en) = Di
`D

j
mD

k
n(εL)`mn,

which indicates that the Levi-Civita tensor is indeed a tensor.

Remark 5. The Levi-Civita tensor is undoubtedly a tensor, since it corresponds to a trilinear form. On the
other hand, we will later show that the Levi-Civita symbol is not a tensor.

Definition 2. Recall that the Levi-Civita symbol εijk a is given by

εijk = sgn

(
i, j, k

1, 2, 3

)
.

We assign εijk to each normal coordinate system in R3 so that εijk is promoted to an entity that is
invariant under normal coordinate transformations, i.e., ε̃ijk = εijk.

a In fact, εijk = −εijk = − sgn
(i,j,k
1,2,3

)
(See Example 1 of 4.3). However, we omit the difference here, because we are

more interested in the transformation property of the Levi-Civita symbol.

Remark 6. We would like to once again accentuate the fact that components of the Levi-Civita tensor in an
arbitrary cobasis {ei}ni=1 are generally not given by the Levi-Civita symbol, i.e., ε(ei, ej , ek) = (εL)ijk 6= εijk.

Definition 3. A rank-N pseudo-tensor ti1,i2,...,iN transforms under a normal coordinate transforma-
tion D in the following way:

t̃i1,i2,...,iN = detD
(
Di1

j1D
i2
j2 · · ·DiN

jN

)
tj1,j2,...,jN = detD

(
N∏
k=1

Dik
jk

)
tj1,j2,...,jN .

Lemma 1. Let x1, . . . , xN ∈ Rn. Let D be a normal coordinate transformation. For any antisymmetric
multilinear form f on Rn, we have

f
(
Di1

j1(x1)j1 , . . . , DiN
jN (xN )jN

)
= detD · f

(
(x1)i1 , . . . , (xN )iN

)
.
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Proof. Please consult Chapter 4.7 of Algebra, Vol. I by B. L. van der Waerden.

Example 4. Now, we are about to show that the Levi-Civita symbol is a rank-3 pseudo-tensor. Let
{ei}ni=1 be the standard cobasis. In {ei}ni=1, we have (εL)ijk = ε(ei, ej , ek) = εijk. Let D be a normal
coordinate transformation ẽi = Di

je
j . According to Lemma 1, components of the Levi-Civita tensor

in the new cobasis {ẽi}ni=1 are given by

(ε̃L)ijk = ε(ẽi, ẽj , ẽk) = ε(Di
`e
`, Dj

me
m, Dk

ne
n) = Di

`D
j
mD

k
nε(e

`, em, en) = Di
`D

j
mD

k
nε
`mn

= detD · ε(ei, ej , ek) = detD · εijk.

We also have (ε̃L)ijk = detD · εijk = detD · ε̃ijk, because εijk is invariant under the normal coordinate
transformation D. Recall that detD = ±1 = 1

detD . Therefore,

ε̃ijk =
1

detD
Di

`D
j
mD

k
nε
`mn = detD(Di

`D
j
mD

k
n)ε`mn,

i.e., εijk is a pseudo-tensor.

Remark 7. It is entertaining to show that Di
`D

j
mD

k
nε
`mn = detD · εijk in the following way:

Di
`D

j
mD

k
nε
`mn =

3∑
`=1

3∑
m=1

3∑
n=1

Di
`D

j
mD

k
n sgn

(
`,m, n

1, 2, 3

)

=
∑

(`,m,n1,2,3 )∈S3

[
sgn

(
`,m, n

1, 2, 3

)
Di

(`,m,n1,2,3 )(1)D
j
(`,m,n1,2,3 )(2)D

k
(`,m,n1,2,3 )(3)

]

= sgn

(
i, j, k

1, 2, 3

) ∑
(`,m,n1,2,3 )∈S3

[
sgn

(
`,m, n

1, 2, 3

) 3∏
s=1

Ds
(`,m,n1,2,3 )(s)

]

= detD · εijk.

5.2 Gradient, Curl and Divergence
The pedantic typist decides to employ upright boldface letters to represent vectors and matrices in the rest
of this section. Components of a vector are denoted in the usual way. For example, xi ≡ (x)i are the
contravariant components of a vector x.

Definition 1. Let us consider the R-vector space Rn with a generalized metric. A scalar field is a
mapping f : Rn → R that assigns each x ∈ Rn a scalar f(x) ∈ R. Likewise, a vector field v : Rn → Rn
assigns each x a vector v(x) ∈ Rn. Let x ∈ Rn be an arbitrary vector.

(i) The gradient of a scalar field f , ∇f is a vector field defined by

(∇f)i(x) :=
∂f

∂xi
(x) ≡ ∂if(x) (i ∈ {i}ni=1).

(ii) The curl of a vector field v, ∇× v is a vector field defined by

(∇× v)i(x) := εijk∂jvk(x) (i ∈ {i}ni=1).

(iii) The divergence of the vector field v, ∇ · v is a scalar field defined by

(∇ · v)(x) = ∂iv
i(x).
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Proposition 1.
For any x ∈ Rn,

(i) the gradient of a scalar field at x transforms in the same way as a covariant vector under a
normal coordinate transformation;

(ii) the curl of a vector field at x transforms as a pseudo-vector.
What is more,

(iii) the divergence of a vector field is indeed a scalar field and transforms as a scalar at each x ∈ Rn.

Proof. See Problem 1.5.2.
Hint. Let {ei}ni=1 be a basis. Let D−1 be a normal coordinate transformation ẽi = ej(D

−1)ji. Recall
that xi = (D−1)ij x̃

j , which implies that

(D−1)ij =
∂xi

∂x̃j
.

For (i), let f(x) be a scalar field. Applying the chain rule, one can easily show that

(∇̃f̃)i(x̃) =
∂f

∂x̃i
(x) = (D−1)ji

∂f

∂xj
(x).

To complete the proof, one just needs to establish that any covariant vector yi transforms under D−1

in the following way:
ỹi = (D−1)jiyj .

Remark 1. Let x ∈ Rn be given. The contravariant components of the gradient of a scalar field f at x can
be defined by

(∇f)i(x) :=
∂f

∂xi
(x) ≡ ∂if(x) (i ∈ {i}ni=1).

The reader ought to verify that it does transform as a contravariant vector.

5.3 Tensor Products and Tensor Traces

Definition 1. Let s and t be tensors of rank M and rank N , respectively. The tensor product of s
and t yields a rank-(M +N) tensor u = s⊗ t whose components are given by

ui1,...,iM+N = si1,...,iM tiM+1,...,iM+N .

Proposition 1. The tensor product of two tensors or two pseudo-tensors is a tensor. The tensor
product of one tensor and one pseudo-tensor is a pseudo-tensor.

Proof. See Problem 1.5.3.
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Definition 2. Let ti1,...,iN+2 be a rank-(N + 2) tensor (or pseudo-tensor). The (1, 2)-trace or (1, 2)-
contraction a of t is defined as the rank-N tensor (or pseudo-tensor) u with components

ui1,...,iN := gjkt
j,k,i1,...,iN = tk

k,i1,...,iN .

aAs the name suggests, components of t are summed over the first two indices.

Proposition 2. Such defined u is indeed a tensor (or pseudo-tensor).

Proof. See Problem 1.5.3.

Example 1. Let x ∈ Rn be given. The curl of a vector field v at x, (∇ × v)(x) can be regarded as
successive contractions of a rank-5 pseudo-tensor:

(∇× v)i(x) = εijk∂jvk(x) = gj`ε
ijk∂`vk(x) = gkmgj`ε

ijk∂`vm(x).

According to Proposition 2, the curl is a pseudo-vector. This is consistent with Proposition 1, (ii)
of 5.2.

5.4 Minkowski Tensors
Let us consider M4, i.e., R4 with the metric g = diag{1,−1,−1,−1}. Let {e0, e1, e2, e3} be a basis. Let
A ∈ M4 be a four-vector with contravariant components Aµ = (A0, A1, A2, A3) ≡ (A0,A) and covariant
components (A0, A1, A2, A3) = Aµ = gµνA

ν = (A0,−A1,−A2,−A3) ≡ (A0,−A). Thereinto, A can be
treated as a three-vector in the 3-dimensional Euclidean space E3 ⊂ M4, which is spanned by the basis
vectors e1, e2, e3. Let F be the rank-2 tensor

Fµν =


F 00 F 01 F 02 F 03

F 10 F 11 F 12 F 13

F 20 F 21 F 22 F 23

F 30 F 31 F 32 F 33

 =

(
F 00 Fhor

Fver F ij

)
.

Like A, Fhor and Fver can also be regarded as three-vectors; F ij can be considered as a rank-2 tensor in
E3.

Example 1. In electromagnetism, the field-strength tensor is given by Fµν = ∂µAν −∂νAµ, where

∂µ :=
∂

∂xµ
=

(
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
=

(
1

c

∂

∂t
,−∇

)
.

Remark 1. Greek indices (running from 0 to 3) are employed to label both temporal and spatial components
of four-vectors. Latin indices (running from 1 to 3) are used to label only the spatial component.

Remark 2. If F is symmetric, i.e., Fµν = F νµ, we have Fhor = Fver and F ij = F ji.

Remark 3. If F is antisymmetric, i.e., Fµν = −F νµ, then Fhor = −Fver, F ij = −F ji, and Fµµ = 0.
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Lemma 1. In E3, the set of antisymmetric rank-2 tensors is isomorphic to the set of pseudo-vectors.

Proof. Let t be an arbitrary antisymmetric rank-2 tensor in E3. t can be written as

tij =

 0 v3 −v2
−v3 0 v1

v2 −v1 0

 = εijkvk,

for some v ∈ E3. According to Proposition 1 of 5.3, v is a pseudo-vector. We have thus shown
that in E3, there exists a one-to-one correspondence between antisymmetric rank-2 tensors and pseudo-
vectors.

Corollary 1. In M4, any antisymmetric rank-2 tensor is of the form
0 a1 a2 a3

−a1 0 v3 −v2
−a2 −v3 0 v1

−a3 v2 −v1 0

 =

(
0 a

−aT tij

)
,

for some three-vector a and pseudo-three-vector v.

Remark 4. Let

Fµν =

(
0 a

−aT tij

)
.

Let us first derive the mixed tensors Fµν and Fµν :

Fµ
ν = gµαF

αν =

(
1 0

0T −13

)(
0 a

−aT tij

)
=

(
0 a

aT −tij

)
,

and

Fµν = Fµαgαν =

(
0 a

−aT tij

)(
1 0

0T −13

)
=

(
0 −a

−aT −tij

)
.

We can further obtain Fµν :

Fµν = gµαgνβF
αβ = Fµ

βgβν =

(
0 a

aT −tij

)(
1 0

0T −13

)
=

(
0 −a

aT tij

)
=

(
0 −a

aT tij

)
.

Notice that

FµνFµν = −F νµFµν = −(FF )νν = −Tr{FF}

= −Tr

{(
0 a

−aT t

)(
0 −a

aT t

)}
= −Tr

{(
aaT at

taT aTa + tt

)}

= −‖a‖2 − Tr
{
aTa + tt

}
= 2

(
‖v‖2 − ‖a‖2

)
,

i.e., FµνFµν is a scalar.
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5.5 Problems
1.5.1. Transformations of tensor fields

a) Consider a covariant rank-n tensor field ti1...in(x) and find its transformation law under normal coordinate
transformations that is analogous to §5.1 def.1; i.e., find how t̃i1...in(x̃) is related to ti1...in(x).

b) Convince yourself that your result is consistent with the transformation properties of (i) a covector xi
(the case n = 1), and (ii) the covariant components of the metric tensor gij .

(4 points)

1.5.2. Curl and divergence

Show that the curl and the divergence of a vector field transform as a pseudovector field and a scalar field,
respectively.

(3 points)

1.5.3. Tensor products, and tensor traces

Prove Propositions 1 and 2 from ch. 1 §5.3.
(4 points)



Chapter 2

Topics in Analysis

1 Reminder: Real Analysis
Note: This paragraph summarizes some material that is covered in typical courses on calculus (including
multivariate calculus). At the UO that would be MATH 251-3 plus MATH 281,2.

1.1 Differentiation and integration

Consider mappings (called “functions” in this context) ~f : Rn → Rm. We say that ~f is an m-vector-valued
function of n real variables and write

~f(~x) ≡ ~f(x1, . . . , xn) = ~y , ~x = (x1, . . . , xn) ∈ Rn

~y = (y1, . . . , yn) ∈ Rm

For m = 1 we write f instead of ~f .

Definition 1.
(a) For n = m = 1 we define the derivative of f , f ′ ≡ df/dx : R→ R by

f ′(x) := lim
ε→0

1

ε
[f(x+ ε)− f(x)] (∗)

and higher derivatives by d2f/dx2 := d
dx f

′, etc.

(b) For n > 1, m = 1 we define partial derivatives ∂f/∂xi ≡ ∂if : Rn → R by (∗) applied to the
argument xi, and the gradient of f , ∂f/∂~x ≡ ~∇f : Rn → Rn by

~∇f(~x) := (∂1f(~x), . . . , ∂nf(~x))

(c) For n = 1, m > 1 we define d~f/dx : R→ Rm by

d~f

dx
:=

(
df1
dx

, . . . ,
dfm
dx

)
(d) For n = m we define the divergence div~f ≡ ~∇ · ~f : Rn → R by

~∇ · ~f(~x) := ∂if
i(~x)

51
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(e) For n = m = 3 we define the curl curl~f ≡ ~∇× ~f : R3 → R3 by(
~∇× ~f(~x)

)i
:= εijk∂jf

k(~x)

Remark 1. If the space is Euclidian, then ∂i = ∂i, and εijk = εijk.

Definition 2. Let I = [t0, t1] ⊂ R and ~x : I → Rn a function of t. Let f : Rn × I → R by a real-valued
function of ~x and t. Then we define the total derivative of f with respect to t, df/dt : I → R by

df

dt
(t∗) ≡ df

dt

∣∣∣∣
t=t∗

:= ∂tf(~x(t∗), t∗) + ∂if(~x(t∗), t∗)
dxi

dt
(t∗)

Proposition 1. Taylor expansion
Let f : Rn → R be m times differentiable at ~x. Then there exists a neighborhood of ~x where f can

be represented by a power series

f(x1 + ε, x2, . . . , xn) = f(x1, . . . , xn) + ε
∂f

∂x1
(x1, . . . , xn) + . . .+

1

m!
εm
∂mf

∂xm1
(x1, . . . xn) + rm

and analogously for other variables.

Proof. Analysis course.

Remark 2. Taylor’s theorem gives an explicit upper bound for the remainder rm.

Definition 3. Let f : I → R be a real-valued function of t ∈ I = [t−, t+] ⊂ R. Then the Riemann
integral

F =

ˆ t+

t−

dt f(t) := lim
N→∞

N−1∑
i=1

f(ti)(ti+1 − ti)

with t1 = t−, tN = t+ is defined as the limit of a sum as indicated, provided the limit exists.

Remark 3. The generalization fo f : I1 × i1 → R, F =
´ t+
t−
dt
´ u+

u−
du f(t, u) is straightforward.

Remark 4. F is a special case of a functional , i.e., a mapping that maps functions onto numbers.

Remark 5. A geometric interpretation of F is the area under the function f , see Fig. 2.1.1.

Fig. 2.1.1. Geometric interpretation of the Riemann integral.



CHAPTER 2. TOPICS IN ANALYSIS 53

1.2 Paths, and line integrals

1.3 Surfaces, and surface integrals
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2 Complex-valued functions of complex arguments
Consider the field C of complex numbers z = z1 + iz2 ≡ z′ + iz′′ (z1, z2, z′, z′′ ∈ R) as constructed in Ch. 1
§3.3.

2.1 Complex functions

2.2 Analyticity

2.3 Problems
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3 Integration in the complex plane

3.1 Path integrals

3.2 Laurent series

3.3 The residue theorem

3.4 Simple applications of the residue theorem

3.5 Another application of complex analysis: The Airy function Ai(x)

3.6 Problems
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4 Fourier transforms and generalized functions

4.1 The Fourier transform in classical analysis

4.2 Inverse Fourier transforms

4.3 Test functions

4.4 Generalized functions

4.5 Dirac’s δ-function

4.6 Problems
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