Problem Assignment # 3

 $\frac{10/15/2020}{\text{due }10/22/2020}$

1.2.2 Products

Prove the corollary to proposition 2 of ch.1 §2.2: If a is an element of a multiplicative group, and $n, m \in \mathbb{N}$, then

- a) $a^n a^m = a^{n+m}$
- b) $(a^n)^m = a^{nm}$

(2 points)

1.2.3 The group S_3

- a) Compile the group table for the symmetric group S_3 . Is S_3 abelian?
- b) Find all subgroups of S_3 . Which of these are abelian?

(6 points)

1.2.4 Abelian groups

Let (G, \vee) be a group with neutral element e. Let $a \in G$ be a fixed element, and define a mapping $\varphi : G \to G$ by $\varphi(x) = a \vee x \vee a^{-1} \ \forall x \in G$.

- a) Show that φ defines an automorphism on G, called an *inner automorphism*.
- b) Show that abelian groups have no inner automorphisms except for the identity mapping $\varphi(x) = x$.
- c) Let $g \vee g = e \ \forall g \in G$. Prove that G is abelian.

(6 points)

1.3.1 Fields

- a) Show that the set of rational numbers $\mathbb Q$ forms a commutative field under the ordinary addition and multiplication of numbers.
- b) Consider a set F with two elements, $F = \{\theta, e\}$. On F, define an operation "plus" (+), about which we assume nothing but the defining properties

$$\theta + \theta = \theta$$
 , $\theta + e = e + \theta = e$, $e + e = \theta$

Further, define a second operation "times" (\cdot) , about which we assume nothing but the defining properties

$$\theta \cdot \theta = e \cdot \theta = \theta \cdot e = \theta$$
 , $e \cdot e = e$

Show that with these definitions (and **no** additional assumptions), F is a field.

(7 points)