1.4.5. \mathbb{R} as a metric space

Consider the reals \mathbb{R} with $\rho: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $\rho(x, y)=|x-y|$. Show that this definition makes \mathbb{R} a metric space.
(3 points)

1.4.6. Limits of sequences

a) Show that a sequence in a metric space has at most one limit.
hint: Assume there are two limits, and use the triangle inequality to show that they must be the same.
b) Show that every sequency with a limit is a Cauchy sequence.
(3 points)

1.4.7. Banach space

Let B be a K -vector space $(\mathrm{k}=\mathbb{R}$ or $\mathbb{C})$ with null vector θ. Let $\|\ldots\|: \mathrm{B} \rightarrow \mathbb{R}$ be a mapping such that
(i) $\|x\| \geq 0 \forall x \in \mathrm{~B}$, and $\|x\|=0$ iff $x=\theta$.
(ii) $\|x+y\| \leq\|x\|+\|y\| \forall x, y \in \mathrm{~B}$.
(iii) $\|\lambda x\|=|\lambda| \cdot\|x\| \forall x \in \mathrm{~B}, \lambda \in \mathrm{~K}$.

Then we call $\|\ldots\|$ a norm on B , and $\|x\|$ the norm of x.
Further define a mapping $d: \mathrm{B} \times \mathrm{B} \rightarrow \mathbb{R}$ by

$$
d(x, y):=\|x-y\| \forall x, y \in \mathrm{~B}
$$

Then we call $d(x, y)$ the distance between x and y.
a) Show that d is a metric in the sense of $\S 4.5$, i.e., that every linear space with a norm is in particular a metric space.
If the normed linear space B with distance/metric d is complete, then we call B a Banach space or B-space.
b) Show that \mathbb{R} and \mathbb{C}, with suitably defined norms, are B-spaces. (For the completeness of \mathbb{R} you can refer to $\S 4.5$ example (3), and you don't have to prove the completeness of \mathbb{C} unless you insist.)
Now let B^{*} be the dual space of B, i.e., the space of linear functionals ℓ on B, and define a norm of ℓ by

$$
\|\ell\|:=\sup _{\| x \mid=1}\{|\ell(x)|\}
$$

c) Show that the such defined norm on B^{*} is a norm in the sense of the norm defined on B above.
(In case you're wondering: B^{*} is complete, and hence a B-space, but the proof of completeness is difficult.)
(5 points)

1.4.8. Hilbert space

a) Show that the norm on a Hilbert space defined by $\S 4.7$ def. 1 is a norm in the sense of the definition in Problem 1.4.7.
hint: Use the Cauchy-Schwarz inequality ($\S 4.7$ lemma).
b) Show that the mappings ℓ defined in $\S 4.7$ def. 4 are linear forms in the sense of $\S 4.3$ def. 1(a).

