2.2.2. Another causal function

The function considered in Problem 2.2.1 is an example of a class of complex functions called causal functions that are important for the theory of many-particle systems. Another member of this class is

$$
g(z)=\sqrt{z^{2}-1}-z
$$

Determine the spectrum and the reactive part of $g(z)$, and plot them for $-3<\omega<3$.
(3 points)

2.2.3. Proof of the Cauchy-Riemann Theorem

Prove the Cauchy-Riemann theorem from ch. 2 §2.2:
a) Let $f(z)=f^{\prime}\left(z^{\prime}, z^{\prime \prime}\right)+i f^{\prime \prime}\left(z^{\prime}, z^{\prime \prime}\right)$ be analytic everywhere in $\Omega \subseteq \mathbb{C}$. Show that the Cauchy-Riemann equations

$$
\frac{\partial f^{\prime}}{\partial z^{\prime}}=\frac{\partial f^{\prime \prime}}{\partial z^{\prime \prime}} \quad \text { and } \quad \frac{\partial f^{\prime}}{\partial z^{\prime \prime}}=-\frac{\partial f^{\prime \prime}}{\partial z^{\prime}}
$$

hold $\forall z \in \Omega$.
hint: Start with the difference quotient $\left(f(z)-f\left(z_{0}\right)\right) /\left(z-z_{0}\right)$ and require that it's limit for $z \rightarrow z_{0}$ exists if z_{0} is approached on paths either parallel to the real axis, or parallel to the imaginary axis.
b) Let the Cauchy-Riemann equations hold in a point $z_{0} \in \Omega$. Show that this implies that f is analytic in the point z_{0}.
hint: Consider $f(z)-f\left(z_{0}\right)$ and expand $f^{\prime}\left(z^{\prime}, z^{\prime \prime}\right)$ and $f^{\prime \prime}\left(z^{\prime}, z^{\prime \prime}\right)$ in Taylor series about z_{0}.
(8 points)

2.2.4. Exponentials

Consider the exponential function

$$
f(z)=e^{z}=e^{z^{\prime}+i z^{\prime \prime}}
$$

a) Show that $f(z)$ is analytic everywhere in \mathbb{C}.
b) Convince your self explicitly that the real and imaginary parts of f obey Laplace's differential equation.
c) Show that $d f /\left.d z\right|_{z}=f(z)$.
d) Show that $\cos z$ and $\sin z$, defined by

$$
\cos z=\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \quad, \quad \sin z=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)
$$

are analytic everywhere in \mathbb{C}, and that

$$
\frac{d}{d z} \cos z=-\sin z \quad, \quad \frac{d}{d z} \sin z=\cos z
$$

2.3.1. Laurent series

Find the Laurent series for the function

$$
f(z)=1 /\left(z^{2}+1\right)
$$

in the point $z=i$. That is, find the coefficients f_{n} that enter the theorem in ch. $2 \S 3.2$.

