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2.3.2. Applications of the residue theorem

Use complex analysis to evaluate the real integrals
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hint: Write sinx = (e'® —e~%)/2i and consider the resulting two integrals with complex integrands. Why
is this a good strategy?
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and check your results by means of Wolfram Alpha.
Let a € C with Rea > 0. Use the residue theorem to show that
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Now let a € R and consider the integral
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and define its Cauchy principal value by
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with f(z) = 1/2(2% + a?). Determine the Cauchy principal value using the residue theorem. Is the result
consistent with the expectation for a real symmetric integral over an antisymmetric integrand?

hint: Go around the pole on a semicircle of radius R and let R — 0.

(17 points)
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2.3.3. Matsubara frequency sum

Let f(z) have simple poles at z; (j = 1,2,...), and no other singularities. Let f(|z] — 00) go to zero faster
then 1/z. Consider the infinite sum

S—-T 3 fion)

with w,, = 27Tn and T > 0. Show that

S = Z n(z;) Res f(z;)

where n(z) = 1/(e*/T — 1) is the Bose distribution function.
hint: Show that n(z) has simple poles at z = i€),,, and integrate n(z) f(z) over an infinite circle centered on
the origin.

note: Sums of this form are important in finite-temperature quantum field theory. In this context, T is the
temperature and €2, is called a “bosonic Matsubara frequency”.
(3 points)



