This is an open-book exam. You can use any inanimate resources you want, but please do not consult any live resources.

Treat this exam exactly as you would treat an in-class exam: Once you open it, you can work on it for up to two contiguous hours. Do NOT stop and resume later. You can choose any two-hour period you like, but you must submit your work by 5pm PDT on Thu, March 18, 2021 at the latest. Submit a legible scan with your name on it to dbelitz@uoregon.edu, NOT to your grader.

1. Magnetic Monopoles

In ch. 1 we noticed that the Maxwell equations are weirdly asymmetrical. This can be fixed as follows. Suppose nature had decided that one 4 -vector potential A^{μ} and one 4 -current J^{μ} was not enough, and there was another 4 -vector field \tilde{A}^{μ} and another 4 -current \tilde{J}^{μ}. Now define a modified field tensor

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\partial_{\kappa} \epsilon_{\mu \nu}^{\kappa \lambda} \tilde{A}_{\lambda}
$$

where $\epsilon_{\alpha \beta \gamma \delta}$ is the 4-dimensional Levi-Civita symbol, and a modified Lagrangian density

$$
\mathcal{L}=\frac{-1}{16 \pi} F_{\mu \nu} F^{\mu \nu}-\frac{1}{c} A_{\mu} J^{\mu}-\frac{1}{c} \tilde{A}_{\mu} \tilde{J}^{\mu}
$$

a) Show that the resulting Euler-Lagrange equations have the form

$$
\partial_{\mu} F^{\mu \nu}=\frac{4 \pi}{c} J^{\nu} \quad, \quad \partial_{\mu} \tilde{F}^{\mu \nu}=\frac{4 \pi}{c} \tilde{J}^{\nu}
$$

where $\tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}$ is the dual field tensor from Problem 1.1.1. Compare these equations of motion with the corresponding ones in Maxwell theory.
b) Define electric and magnetic fields \boldsymbol{E} and \boldsymbol{B} by parameterizing the field tensor $F^{\mu \nu}$ as in Maxwell theory, express the equations of motion from part a) in terms of \boldsymbol{E} and \boldsymbol{B}, and compare the result with the usual Maxwell equations.
c) Show that the 4 -current \tilde{J}^{μ} obeys a continuity equation and briefly discuss its physical meaning.

2. Dipole in an external field

Three equal charges q are sitting on the corners of an equilateral triangle in the $x-y$ plane, each at a distance a from the origin. At the center of the triangle sits an electric dipole \boldsymbol{d}. The positions of the charges and the dipole are fixed, but the dipole is free to rotate in the $x-y$ plane. Calculate the electrostatic interaction energy of this system to dipolar order, and determine the equilibrium orientation of the dipole (i.e., the angle ϕ that minimizes the energy).

