This assignment is in lieu of Assignment \# 5. It doubles as the Midterm and overlaps with Assignment \# 4, so you have two weeks to work on it. You can use any inanimate resource you like, but please don't consult any live resources. If you have questions, send me email. I will either answer publicly, or I will privately tell you that I won't answer the question. Submit no later than 4 pm on Friday, $2 / 12 / 2021$ by email to dbelitz@uoregon.edu, NOT to your grader.

0.2.9 Relativistic Kepler problem

Consider the motion of a point mass m in an attractive Coulomb potential centered at the origin within the framework of special relativity:

$$
L=m c^{2}-m c^{2} \sqrt{1-(\vec{v} / c)^{2}}+\alpha / r \quad, \quad(\alpha>0, r=|\vec{x}|)
$$

Let the z-component of the angular momentum be $\ell \geq 0$.
a) Use the conservation laws for the energy and the angular momentum to find the radial equation of motion,

$$
\dot{r}^{2}=c^{2} f(r ; E, \ell)
$$

and the equation for the sectorial velocity

$$
r^{2} \dot{\phi}=g(r ; E, \ell)
$$

where ϕ is the azimuthal angle. Explicitly determined the functions f and g and show that in the nonrelativistic limit they correctly reduce to the Galilean case.
hint: Take the angular momentum $\vec{\ell}$ to point in the z-direction. You know from Mechanics that the rotational invariance of L implies that the orbit lies in a plane perpendicular to $\vec{\ell}$; you can use that without proof. Use polar coordinates in the orbital plane.
b) Assume $\ell=0$, and let $\dot{r}(t=0)=0, r(t=0)=2 a$. Discuss and draw \dot{r} as a function of r, and compare with the Galilean case. Determine the oscillation period $T(a)$ in terms of a dimensionless integral that depends only on the parameter $\xi=\alpha / 2 a m c^{2}$. Discuss your result in the nonrelativistic and ultrarelativistic limits $(\xi \rightarrow 0$ and $\xi \rightarrow \infty$, respectively). Show that Kepler's third law gets modified within special relativity, and plot $T / T_{\xi=0}$ as a function of ξ.
c) Now assume $\ell>0$. Use $f(r ; E, \ell)$ from part a) to discuss all possible types of motion. Show that there are qualitative changes compared to Galilean mechanics; in particular that the particle can reach the center provided $\zeta:=\alpha^{2} / \ell^{2} c^{2}>1$. Determine the pericenter (distance closest to the center) and the apocenter (distance farthest from the center) and show that in the Keplerian result is recovered in the nonrelativistic limit $\zeta \rightarrow 0$. Find the condition for the existence of an allowed region and again show that the Keplerian result is recovered for $\zeta \rightarrow 0$.
hint: Write f in the form

$$
f(r ; E, \ell)=\frac{2 \epsilon+\epsilon^{2}}{(1+\epsilon)^{2}}-\zeta \frac{(p / r)^{2}}{(1+\epsilon)^{2}}
$$

with $p=\ell^{2} / m \alpha$ the quantity known as 'parameter' in celestial mechanics and $\epsilon=(E+\alpha / r) / m c^{2}$ a local energy parameter. Discuss ϵ as a function of r and the two contributions to f as functions of ϵ to obtain a qualitative picture of f as a function of r. Then solve the condition $f\left(r_{ \pm} ; E, \ell\right)=0$ to obtain the turning points of the radial motion.
d) Assume $\zeta<1$ and determine the equation of orbit. Show that the result can be written in a closed form that generalizes the Galilean result:

$$
p^{*} / r=1+e^{*} \cos (\sqrt{1-\zeta} \phi)
$$

Determine p^{*} and e^{*} and convince yourself that in the nonrelativistic limit you recover the Keplerian orbit.
e) Use the preceding results to calculate the perihelion advance of Mercury to leading order in $1 / c^{2}$. Estimate the accuracy of that approximation. Compare your result with the experimental result of 43 "/century.
hint: The semi-major axis, period, and eccentricity, respectively, of Mercury's Galilean orbit are: $a=5.79 \times 10^{12} \mathrm{~cm}, T=88$ days, and $e=0.206$
f) Consider the classical motion of an electron in the field of a Th nucleus ($\alpha=Z e^{2}, Z=90$). Draw the orbit on a scale of $1: 10^{-10}$ for the four cases $\ell=\hbar, 2 \hbar, E= \pm 12 \mathrm{keV}$. (Use $\hbar=10^{-27} \mathrm{erg}$, $\hbar c / e^{2}=137$.) Also draw the corresponding Galilean orbits.

