2.3.1. Quadrupole moments (continued)

This is a continuation of Problem \#2.3.1.
e) Consider the homogeneously charged ellipsoid from part c) and calculate the quadrupole moments $Q_{2 m}$ as defined in ch. $2 \S 3.5$.
(3 points)

2.3.7. Electrostatic interaction II: Quadrupole in an external electric field

Consider the following classical model for a nuclear quadrupole moment in a crystal lattice: A rectangular parallelepiped (height A, length and width B) carries a charge e at each of its eight corners. At the center of the parallelepiped is a homogeneously charged spheroid (charge Q, semi-axes a and b). The symmetry axis of the spheroid forms an angle θ with the A-axis of the parallelepiped. The center of the spheroid is fixed, but the angle θ can vary. Let $A \gg a, B \gg b$.
a) Calculate the electrostatic interaction energy U of this system to quadrupolar order. Show that U can be expressed in terms of e, the lattice constants A and B, and the quadrupole moment Q_{33} of the spheroid in the coordinate system of the lattice.

b) Calculate the quadrupole moment Q_{33}^{\prime} of the spheroid in its principal-axes system, and then calculate Q_{33} by transforming into the lattice system. Express U as a function of the angle θ.
hint: In general, lining up the principal-axes systems would require three Euler angles. However, due to the symmetries of the problem Q_{33}^{\prime} and Q_{33} in the present case are related by only one angle, viz., θ.
c) Find the equilibrium positions of the spheroid. Make sure to distinguish the cases of prolate and oblate spheroids ($a>b$ and $a<b$, respectively), as well as between the cases $A>B$ and $A<B$.
(15 points)

2.3.8. Electric charges in an external field

Consider a static electric charge distribution $\rho(\boldsymbol{x})$ subject to a static potential $\varphi(\boldsymbol{x})$. Consider the force $\boldsymbol{F}_{\mathrm{e} ~}$ on the charge distribution and show that $\boldsymbol{F}_{\text {el }}=-\nabla U$, with U the electrostatic energy calculated in ch. 3 §3.6. In particular, convince yourself that the dipole term in the multipole expansion of U gives the correct potential energy for an electric dipole moment \boldsymbol{d} in an electric field \boldsymbol{E}.

