3.1.1. Electromagnetic waves and gauge invariance

a) Show that the Lorenz gauge, $\frac{1}{c} \partial_{t} \varphi+\nabla \cdot \boldsymbol{A}=0$, still does not uniquely determine the potentials of an electromagnetic wave: Let f be an arbitrary scalar solution of the wave equation, $\square f=0$. Then the transformation $\boldsymbol{A} \rightarrow \boldsymbol{A}+\boldsymbol{\nabla} f, \varphi \rightarrow \varphi-\frac{1}{c} \partial_{t} f$ leaves both the wave equation for the 4 -vector potential and the fields unchanged.
b) Show in particular that the gauge of an electromagnetic wave can always be chosen such that $\varphi=0$, $\boldsymbol{\nabla} \cdot \boldsymbol{A}=0$.

3.1.2. Plane waves

Consider the scalar field

$$
\psi(\boldsymbol{x}, t)=\cos (\boldsymbol{k} \cdot \boldsymbol{x}-\omega t)
$$

where \boldsymbol{k} is a Euclidian vector.
a) What is necessary and sufficient to make ψ a solution of the wave equation?
b) Perform a Lorentz boost, and show that the transformed wave again has the form

$$
\psi^{\prime}\left(\boldsymbol{x}^{\prime}, t^{\prime}\right)=\cos \left(\boldsymbol{k}^{\prime} \cdot \boldsymbol{x}^{\prime}-\omega^{\prime} t^{\prime}\right)
$$

How are \boldsymbol{k}^{\prime} and ω^{\prime} related to \boldsymbol{k} and ω ?

3.1.3. Spherical waves

Consider the wave equation

$$
\left(\frac{1}{c^{2}} \partial_{t}^{2}-\boldsymbol{\nabla}^{2}\right) f(\boldsymbol{x}, t)=0
$$

Find and discuss the most general solution that has the form

$$
f(\boldsymbol{x}, t)=u(r, t) / r
$$

where $r=|\boldsymbol{x}|$.

3.1.4. Cosmological redshift

Edwin Hubble observed the following relation between the wavelength of spectral lines in galaxies and the distance of the galaxies from the earth:

$$
\left(\lambda-\lambda_{0}\right) / \lambda=H r / c
$$

where λ is the wavelength of a spectral line as observed in the galaxy, λ_{0} is the wavelength of the same spectral line as measure in the laboratory, r is the distance of the galaxy, and c is the speed of light. H is observed to be roughly $H \approx 68(\mathrm{~km} / \mathrm{s}) / \mathrm{Mpc}\left(1 \mathrm{Mpc}=3.26 \times 10^{6}\right.$ light years $)$.
a) Assuming that the observed red shift is due to the nonrelativistic Doppler effect, and that the motion of the galay is purely radial, find a relation between the distance of a galaxy and its velocity with respect to the earth.
b) How long did it take a galaxy that's now at distance r to get there? Use the result to estimate the age of the universe.
c) Hubble's original estimate was $H \approx 530(\mathrm{~km} / \mathrm{s}) / \mathrm{Mpc}$. Why does this value pose a problem?
(3 points)

3.2.1. General solution of the wave equation

Consider a one-dimensional wave equation

$$
\left(\partial_{t}^{2}-c^{2} \partial_{x}^{2}\right) f(x, t)=0
$$

Show that the general solution constructed by Fourier transform in ch. $3 \S 2.2$ has the form of the d'Alembert solution from ch. $3 \S 1.2$, and vice versa.

4.1.1. Wave equations for the electromagnetic fields

Show directly from the Maxwell equations, without introducing potentials, that the fields obey the inhomogeneous wave equations

$$
\square \boldsymbol{E}=-4 \pi\left(\nabla \rho+\frac{1}{c^{2}} \partial_{t} \boldsymbol{j}\right) \quad, \quad \square \boldsymbol{B}=\frac{4 \pi}{c} \boldsymbol{\nabla} \times \boldsymbol{j}
$$

