4.1.2. Polaritons

This problem doubles as the take-home midterm. Submit your solution to dbelitzuoregon.edu no later than 12 noon on Thursday, April 29. Please see my email with subject line ' 623 Midterm' for additional instructions.

As a model for a dielectric, consider a polarization field $\boldsymbol{P}(\boldsymbol{x}, t)$ that determines the sources of the electromagnetic fields according to

$$
\boldsymbol{j}=\partial_{t} \boldsymbol{P} \quad, \quad \rho=-\boldsymbol{\nabla} \cdot \boldsymbol{P} .
$$

In addition to Maxwell's equations, the dynamics of the system are governed by an equation of motion for \boldsymbol{P},

$$
\left(\partial_{t}^{2}+\omega_{0}^{2}\right) \boldsymbol{P}(\boldsymbol{x}, t)=a^{2} \boldsymbol{E}(\boldsymbol{x}, t)
$$

where ω_{0} is a characteristic frequency and a is a real parameter (which dimensionally also is a frequency). This models the dielectric as a harmonic oscillator that is driven by the electric field.
a) Show that Maxwell's equations plus $(*)$ have solutions given by both longitudinal $(\boldsymbol{k} \| \boldsymbol{E}, \boldsymbol{P})$ and transverse $(\boldsymbol{k} \perp \boldsymbol{E}, \boldsymbol{P})$ monochromatic plane waves, and find the frequency-wavenumber relations for the various solutions.
b) Show that the transverse waves in the long-wavelength limit are photon-like, viz., $\omega_{T}(\boldsymbol{k} \rightarrow 0)=(c / n)|\boldsymbol{k}|$, and determine the index of refraction n.
c) Show that no homogeneous wave propagation is possible in a frequency band $\omega_{-}<\omega<\omega_{+}$, and find ω_{\mp}. Derive the Lyddane-Sachs-Teller relation

$$
\omega_{+}^{2} / \omega_{-}^{2}=\epsilon(\omega=0)
$$

where $\epsilon(\omega)=1+4 \pi a^{2} /\left(\omega_{0}^{2}-\omega^{2}\right)$ is the dielectric function of the dielectric.
d) Discuss the frequency-wavenumber relation for all possible waves explicitly, especially in the limits $k \rightarrow 0$ and $k \rightarrow \infty$, and plot the result.

4.2.1. Liénard-Wiechert potentials

Consider a point charge e that moves on a given trajectory $\boldsymbol{X}(t)$ with velocity $\boldsymbol{v}(t)=\dot{\boldsymbol{X}}(t)$ which results in charge and current densities

$$
\rho(\boldsymbol{x}, t)=e \delta(\boldsymbol{x}-\boldsymbol{X}(t)) \quad, \quad \boldsymbol{j}(\boldsymbol{x}, t)=e \boldsymbol{v}(t) \delta(\boldsymbol{x}-\boldsymbol{X}(t))
$$

Show that the resulting retarded potentials have the form

$$
\begin{gathered}
\varphi(\boldsymbol{x}, t)=\frac{e}{\left|\boldsymbol{x}-\boldsymbol{X}\left(t_{-}\right)\right|-\boldsymbol{v}\left(t_{-}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{X}\left(t_{-}\right)\right) / c} \\
\boldsymbol{A}(\boldsymbol{x}, t)=\frac{1}{c} \boldsymbol{v}\left(t_{-}\right) \varphi(\boldsymbol{x}, t)
\end{gathered}
$$

where t_{-}is the solution of

$$
\begin{equation*}
t_{-}=t-\frac{1}{c}\left|\boldsymbol{x}-\boldsymbol{X}\left(t_{-}\right)\right| \tag{*}
\end{equation*}
$$

These are known as Liénard-Wiechert potentials after Alfred-Marie Liénard and Emil Wiechert, who derived them in 1898 and 1900, respectively.
hint: Show that the equation $(*)$ for t_{-}has one and only one solution.

4.2.2. Potential of a uniformly moving charge

Consider a charge e moving uniformly along the x-axis with velocity $v: \boldsymbol{X}(t)=(v t, 0,0)$. Determine the Liénard-Wiechert potentials explicitly, and show that the result is that same as the one obtained in ch. 2 $\S 2.4$ by means of a Lorentz transformation.

