2.2.1. Planar charge distributions

- a) Consider a homogeneously charged infinitesimally thin ring with radius R and total charge Q that is oriented perpendicular to the z-axis. Calculate the electric field on the z-axis.
- b) The same for a homogeneously charged disk with charge density σ and radius R. Consider the limits $z \to \infty$, $z \to 0$, and $R \to \infty$, and ascertain that they makes sense.

(4 points)

2.2.2. Spherically symmetric charge distributions

Consider a spherically symmetric static charge distribution (in spherical coordinates): $\rho(\mathbf{x}) = \rho(r)$.

a) Express the electric field in terms of a one-dimensional integral over $\rho(r)$, and the electrostatic potential by a one-dimensional integral over the field.

hint: Make an ansatz for a purely radial field, $\mathbf{E}(\mathbf{x}) = E(r)\hat{e}_r$, and integrate Gauss's law over a spherical volume.

Explicitly calculate and plot the field E(x) and the potential $\varphi(x)$ for

b) a homogeneously charged sphere

$$\rho(\boldsymbol{x}) = \begin{cases} \rho_0 & \text{if } r \leq r_0 \\ 0 & \text{if } r > r_0 \end{cases}.$$

c) a homogeneously charged spherical shell

$$\rho(\boldsymbol{x}) = \sigma_0 \, \delta(r - r_0) \; .$$

(8 points)

2.2.3. Electrostatics in d dimensions (to be continued later)

Consider the third Maxwell equation in d dimensions:

$$\nabla \cdot \boldsymbol{E}(\boldsymbol{x}) = S_d \, \rho(\boldsymbol{x})$$

with the electric field E a d-vector, and S_d the area of the (d-1)-sphere: $S_{2n} = 2\pi^n/(n-1)!$ and $S_{2n+1} = 2^{2n+1}n!\pi^n/(2n)!$ for even and odd dimensions, respectively. Define a scalar potential $\varphi(x)$ in analogy to the 3-d case, such that

$$\boldsymbol{E}(\boldsymbol{x}) = -\boldsymbol{\nabla}\varphi(\boldsymbol{x})$$

and consider Poisson's equation

$$\nabla^2 \varphi(\boldsymbol{x}) = -S_d \, \rho(\boldsymbol{x})$$

note: Here we consider a generalization of electrostatics to d-dimensional space, NOT a d-dimensional charge distribution embedded in 3-dimensional space.

... /over

a) Show that the Green function $G_d(x)$ function for Poisson's equation, i.e., the solution of

$$\nabla^2 G_d(\boldsymbol{x}) = -S_d \,\delta(\boldsymbol{x})$$

is given by

$$G_d(x) = \frac{1}{d-2} \frac{1}{|x|^{d-2}}$$

for all $d \neq 2$, and by

$$G_2(\boldsymbol{x}) = \ln(1/|\boldsymbol{x}|)$$

for d=2.

hint: For d=1, differentiate directly, using $d \operatorname{sgn} x/dx=2 \delta(x)$. For $d\geq 2$, show that $G_d(\boldsymbol{x})$ is a harmonic function for all $\boldsymbol{x}\neq 0$, then integrate $\nabla^2 G_d$ over a hypersphere around the origin and use Gauss's law.

(4 points)