2.3.2. Legendre polynomials

Consider the ODE

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0
$$

with λ a constant. Show that a necessary condition for the existence of a polynomial solution is

$$
\lambda=n(n+1)
$$

with $n=0,1, \ldots$ What else do you need to require in order to get a condition that is necessary and sufficient? Convince yourself that these considerations correctly produce the first three Legendra polynomials up to an overall normalization factor.
hint: Make a power-series ansatz and require that the series terminates.
(4 points)

2.3.3. Associated Legendre functions

note: When comparing with the reference book by Abramowitz and Stegun, note that their $P_{\ell}^{m}(x)$
equals $(-)^{3 m / 2}$ times our $P_{\ell}^{m}(x)$.
Show that

$$
\left(\sqrt{1-x^{2}} \frac{d}{d x}-m \frac{x}{\sqrt{1-x^{2}}}\right) P_{\ell}^{m}(x)=(\ell+m)(\ell-m+1) P_{\ell}^{m-1}(x)
$$

hint: First differentiate Legendre's ODE $m-1$ times to show that

$$
\left(1-x^{2}\right) \frac{d^{m+1}}{d x^{m+1}} P_{n}(x)-2 m x \frac{d^{m}}{d x^{m}} P_{n}(x)+(n+m)(n-m+1) \frac{d^{m-1}}{d x^{m-1}} P_{n}(x)=0
$$

Then use this in evaluating $\sqrt{1-x^{2}} d P_{\ell}^{m}(x) / d x$.

2.3.4. Spherical harmonics

Prove that the sperical harmonics have the following properties:

$$
\begin{align*}
Y_{\ell}^{m}(\Omega)^{*} & =(-)^{m} Y_{\ell}^{-m}(\Omega) \tag{1}\\
\cos \theta Y_{\ell}^{m}(\Omega) & =\left(\frac{(\ell+1-m)(\ell+1+m)}{(2 \ell+1)(2 \ell+3)}\right)^{1 / 2} Y_{\ell+1}^{m}(\Omega)+\left(\frac{(\ell-m)(\ell+m)}{(2 \ell-1)(2 \ell+1)}\right)^{1 / 2} Y_{\ell-1}^{m}(\Omega) \tag{2}\\
\sin \theta e^{ \pm i \varphi} Y_{\ell}^{m}(\Omega) & = \pm\left(\frac{(\ell \mp m-1)(\ell \mp m)}{(2 \ell-1)(2 \ell+1)}\right)^{1 / 2} Y_{\ell-1}^{m \pm 1}(\Omega) \mp\left(\frac{(\ell \pm m+1)(\ell \pm m+2)}{(2 \ell+1)(2 \ell+3)}\right)^{1 / 2} Y_{\ell+1}^{m \pm 1}(\Omega)(3) \\
\hat{L}_{\mp} Y_{\ell}^{m}(\Omega) & =((\ell \pm m)(\ell \mp m+1))^{1 / 2} Y_{\ell}^{m \mp 1}(\Omega) \tag{4}
\end{align*}
$$

where

$$
\hat{L}_{\mp}=e^{\mp i \varphi}\left[\mp \frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \varphi}\right]
$$

hint: Use the properties of the associated Legendre functions we quoted in ch. $3 \S 3.2$, as well as Problem 2.3.3.
(9 points)

2.3.5. Field due to distant charges

Consider the electric field generated by a charge density $\rho(\boldsymbol{y})$ that vanishes inside a sphere with radius r_{0} : $\rho(\boldsymbol{y})=0$ for $|\boldsymbol{y}| \leq r_{0}$. Show that
a) If ρ is invariant under parity operations, $\rho(-\boldsymbol{y})=\rho(\boldsymbol{y})$, then the electric field at the origin vanishes.
b) If $\rho(\boldsymbol{y})$ is invariant under rotations about the z-axis through multiples of an angle α with $|\alpha|<\pi$, then the field-gradient tensor at the origin has the form $\varphi_{i j}(\boldsymbol{x}=0)=\left(\begin{array}{ccc}\varphi & 0 & 0 \\ 0 & \varphi & 0 \\ 0 & 0 & -2 \varphi\end{array}\right)$
c) If $\rho(\boldsymbol{y})$ has cubic symmetry, i.e., if $\rho(\boldsymbol{y})$ is invariant under rotations through $\pi / 2$ about any of the three axes x, y, and z, then the field-gradient tensor at the origin vanishes.

