Problem Assignment # 3

 $\begin{array}{c}
01/22/2021\\ \text{due } 01/29/2021\end{array}$

0.2.8. Relativistic motion in parallel electric and magnetic fields

Consider a relativistic charged particle (mass m, charge e) in parallel homogeneous electric and magnetic fields $\mathbf{E} = (0, 0, E)$, $\mathbf{B} = (0, 0, B)$.

- a) Show that the equation of motion for the z-component of the momentum p_z decouples from p_x and p_y , and that the momentum perpendicular to the z-axis is a constant of motion: $p_x^2 + p_y^2 \equiv p_\perp^2 = \text{const.}$
- b) Choose the zero of time such that $p_z(t=0)=0$, and show that with a suitable chosen origin the z-component of the particle's position can be written

$$z(t) = \frac{1}{eE} \sqrt{T_0^2 + c^2 e^2 E^2 t^2}$$

where T_0 is the kinetic energy (i.e., the energy of the particle without the potential energy due to the fields) at time t = 0.

hint: Recall Einstein's law of falling bodies, ch. 0 §3.3.

c) Introduce a parameter φ via $d\varphi/dt = ceB/T(t)$, with T(t) the time-dependent kinetic energy. Show that the orbit of the particle can be represented in the parametric form

$$x = \frac{cp_{\perp}}{eB} \sin \varphi$$
 , $y = \frac{cp_{\perp}}{eB} \cos \varphi$, $z = \frac{T_0}{eE} \cosh(E\varphi/B)$

and explicitly find the relation between φ and t.

hint: Consider $\pi := p_x + ip_y$ and note that $|\pi| = p_{\perp} = \text{const.}$ by the result of part a).

d) Describe and visualize the orbit, and discuss the motion in the limits of large and small times.

(14 points)

1.1.1. Dual field tensor

Show that the dual field tensor $\tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\lambda\kappa} F_{\lambda\kappa}$ obeys $\partial_{\mu} \tilde{F}^{\mu\nu}(x) = 0$.

hint: First show that $\partial^{\lambda} F^{\mu\nu} + \partial^{\mu} F^{\nu\lambda} + \partial^{\nu} F^{\lambda\mu} = 0$, and then relate $\partial_{\mu} \tilde{F}^{\mu\nu}(x)$ to that expression.

(2 points)

1.1.2. Ginzburg-Landau theory

Ginzburg and Landau postulated that superconductivity can be described by an action (which is NOT Lorentz invariant)

$$S_{\mathrm{GL}} = \int dm{x} \Big[r \left| \phi(m{x}) \right|^2 + c \left| \left[
abla - iqm{A}(m{x}) \right] \phi(m{x}) \right|^2 + u \left| \phi(m{x}) \right|^4 + rac{1}{16\pi\mu} F_{ij}(m{x}) F^{ij}(m{x}) \Big]$$

Here $\mathbf{x} \in \mathbb{R}^3$, and $\phi(\mathbf{x})$ is a complex-valued field that describes the superconducting matter, \mathbf{A} is the Euclidian vector field that comprises the spatial components of the 4-vector $A^{\mu} = (A^0, \mathbf{A})$, and $F_{ij} = \partial_i A_j - \partial_j A_i$ (i, j = 1, 2, 3). μ and q are coupling constants that characterize the vector potential and its coupling to the matter, and r, c and u are further parameters of the theory.

- a) Find the coupled differential equations (known as Ginzburg-Landau equations) whose solutions extremize this action by considering the functional derivatives of $S_{\rm GL}$ with respect to all independent fields. (See Problem 0.2.4. You may want to double check against what you get from the Landau-Lifshitz method we used in class.)
- b) Show that this theory is invariant under gauge transformations $\phi(x) \to \phi(x) e^{iq\lambda(x)}$, $A(x) \to A(x) + \nabla \lambda(x)$.
- c) Show that the Lorentz-invariant Lagrangian density for a massive scalar field, Problem 0.2.5, can be made gauge invariant by coupling $\phi(x)$ to the electromagnetic vector potential $A^{\mu}(x)$.

hint: Replace the 4-gradient ∂_{μ} by $D_{\mu} = \partial_{\mu} - iqA_{\mu}$ and add the Maxwell Lagrangian.

note: If we had never heard of the electromagnetic potential, insisting on gauge invariance would force us to invent it!

(7 points)

(1)

0

-> Pt = eE dempted pur Px, Ps -> Pttr- eEt (vill t=0 don nd llet Pt(t=0)=0 The forus i x cd j-direction en

$$F_{\times} = \frac{e}{c} (\vec{v} \times \vec{0})_{\times} = \frac{e\vec{0}}{c} v_{S}, \quad F_{S} = \frac{e}{c} (\vec{v} \times \vec{0})_{S} = \frac{e\vec{0}}{c} v_{X}$$

$$\Rightarrow \hat{p}_{x} = \frac{e\vec{u}}{c} v_{2} , \hat{p}_{3} = \frac{-e\vec{u}}{c} v_{x}$$
 (*)

$$\frac{1}{1} + \frac{1}{3} \cdot \frac{1}{1} = \frac{cp}{1} = \frac{c^2p}{1} = \frac$$

$$= \frac{1}{eE} \int_{0}^{1} dx = \frac{$$

c) Infine
$$\mathcal{L} = p_{x+i}p_{y}$$

(a) $\rightarrow \mathcal{L} \cdot c_{i}^{2}(-i)(v_{x+i}v_{y}) = \frac{c_{i}^{2}(-i)}{c_{i}^{2}} \approx -i\frac{c_{i}^{2}c_{i}}{c_{i}^{2}} \approx -i\frac{c_{i}^{2}c_{i}}{c_{i$

0

(y)

$$= \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left(\frac$$

$$\Rightarrow \frac{dx}{d\phi} = \frac{cp_{\perp}}{e\overline{\Omega}} \cos \phi , \quad \frac{dy}{d\phi} = -\frac{cp_{\perp}}{e\overline{\Omega}} \sin \phi$$

x =
$$\frac{cp_1}{cd}$$
 nig, y = $\frac{cp_1}{cd}$ usy vike milesty don origin

$$\Rightarrow \varphi = \frac{1}{E} \operatorname{cril}\left(\frac{\operatorname{ceEt}}{T_0}\right)$$

$$=\frac{10}{cE} \text{ wsh } \frac{E\varphi}{I}$$

(1)

()

Now we have the orbit is a pore un his representation

Who is right to t via

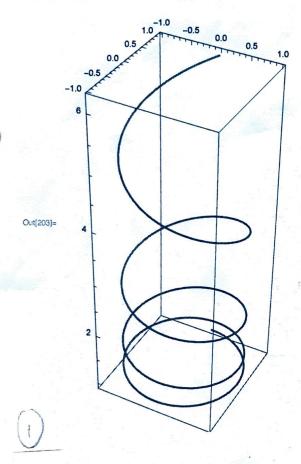
$$\varphi = \frac{1}{E} \operatorname{crol} \frac{\operatorname{ceEt}}{T_0} \quad \text{or} \quad t = \frac{T_0}{\operatorname{ceE}} \quad \text{iii} \quad \frac{E\varphi}{II}$$

of). The whit is a helix whom pitch i coross exportely with i cross; uple. Closing her wit of dayle and lect $r_1 := cp_2/cil = 1$ or how

An is a rough for to=1, E/I=0.1:

```
In[198] = Z0 = 1
    EB = 0.1
    x[phi_] := Sin[phi]
    y[phi_] := Cos[phi]
    z[phi_] := z0 Cosh[EB phi]
    ParametricPlot3D[{x[phi], y[phi], z[phi]}, {phi, 0, 8 Pi}]
Out[198] 1
```

Out[199]= 0.1



For
$$t \gg \frac{10}{ceE}$$
 or have $T \gg ceEt$
 $r \gg \dot{q} = \frac{ceB}{T} \gg \frac{ceB}{teE} \frac{1}{t} - \frac{B}{E} \frac{1}{t} \rightarrow 0$ the explor velocity pers to tens

the thirty of
$$= \epsilon \operatorname{Bol}(t) + O(t^2)$$
 with appropriate $\phi = \epsilon \operatorname{Bol}(t) + O(t^2)$ with appearation

ed $t(t) = t_0 + \frac{1}{2} \frac{c^2 e}{T_0} t^2 + O(t^6)$ Galier result

1. [. [.] $d1 = 1.1 dy = 1 \Rightarrow Ftv = 0tAv - 0vAt$ $\frac{\partial^{2} Ftv}{\partial v} + 0tFvA + 0vFAt} = \frac{\partial^{2} \partial^{2} Av}{\partial v} - \frac{\partial^{2} \partial^{2} At}{\partial v} = 0$ $\frac{\partial^{2} \partial^{2} At}{\partial v} + \frac{\partial^{2} \partial^{2} At}{\partial v} = 0$ $\frac{\partial^{2} \partial^{2} At}{\partial v} + \frac{\partial^{2} \partial^{2} At}{\partial v} = 0$ (8)

E alignmetic 2 : Etury [of the Axt of the fort] : England : E alignmetic 2 : Etury [of the Axt of the Axt of the] : O = O

1.1.2.)

c) $0 = \frac{\delta \beta_{GL}}{\delta \phi(\tilde{x})} = -r \phi(\tilde{x}) + 2\phi(\tilde{x}) |\phi(\tilde{x})|^2 + c \frac{\delta}{\delta \phi'(\tilde{x})} \int d\tilde{x} (\vec{p} - ij\tilde{A}) \phi(\vec{p} - ij\tilde{A}) \phi'(\vec{p} - ij\tilde{A}) \phi'(\vec{p}$

() - crd+2cb1412-c(H-igk)24

 $0 = \frac{\delta S_{GL}'}{\partial \tilde{A}(\tilde{x})} = c \left(-ig\right) \phi \left(\vec{r} \cdot cig\tilde{A}\right) \phi' + c ig \left((\vec{r} - cig\tilde{A})\phi\right) \phi''$ $+ \frac{1}{1657} \frac{\delta}{\delta \tilde{A}(\tilde{x})} \int d\tilde{J} F_{ij}(\tilde{J}) F_{ij}(\tilde{J})$

Fig Fis = (2.4; -3.4;)(2.4; -234;)=2 & hij Ehlun 2:1; 2.4; =2(AxA)2

-> \frac{5}{5\frac{1}{3}} \langle \frac{5}{5\frac{1}{3}} \lang

=- 2 8x (8x A(x))

= (0) \$ (\vec{1} - igh) \$ + c.c. - \frac{1}{45} \vec{1} \times (\vec{1} \times \vec{1}(\vec{1}))

 $-c\left[\overline{\nabla}-ig\overline{k}(\overline{x})\right]^{2}\phi(\overline{x})+\left[r+2u\left[\phi(\overline{x})\right]^{2}\right]\phi(\overline{x})=0$

 $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}(\vec{x})) = 4 \vec{\nabla} \mu ciq \phi^*(\vec{x}) (\vec{\nabla} - iq \vec{A}(\vec{x})) \phi(\vec{x}) + c.e.$

GL egs

b) Let $\phi(\bar{x}) \rightarrow \phi(\bar{x}) e^{i\hat{x}\lambda(\bar{x})}$, $\tilde{A}(\bar{x}) \rightarrow \tilde{A}(\bar{x}) \cdot \tilde{\nabla}\lambda(\bar{x})$

 $\rightarrow |\phi(\tilde{x})|^2 \rightarrow |\phi(\tilde{x})|^2$

ed Fij(x) = 2; 4; -2; 4i -> 2; (4; +2; 1) - 2; (4; +2; 1) = Fij(x)

Field,

(1)

(F-ig A) + -> (V-ig A-ig V) peigd = =

- (\$\vert \) e ig \(+ ig \vert \) \pe ig \(- ig \vert \) \pe ig \(+ ig \vert \) \pe ig \(+ ig \vert \) \pe ig \(+ ig \vert \) \phi \(+ ig \vert \) \

-> |(V-ig x) p) -> |(V-ig x) p)

-> Sec is sompriouset

c) hodify & fre Proth Ib) to read

2 = (Dr p(x)) (Dt p(x)) - m (p(x)) - 1 Fru(x) Fru(x) (x)

who dr = dr - ig Ap

Lt \$(x) -> \$(x) e ig2(x), At(x) -> At(x) + 2tx(x)

-> Tol -> 101 ed Fru Ftu -> Fru Ftu

Dr + -> (2,-ig Ar - ig 2,2) peigh

= eigh (2, ig 2, 2-ig 4, - ig 2, 2) = eigh 2, p

-> (Dr f) (Dt f) => (Dr f) (Dt f+)

-> (x) is gaze ivanet