03/05/2021due 03/12/2021

Problem Assignment # 9

2.3.2. Legendre polynomials

Consider the ODE

$$(1 - x^2)y'' - 2xy' + \lambda y = 0$$

with λ a constant. Show that a necessary condition for the existence of a polynomial solution is

$$\lambda = n(n+1)$$

with n = 0, 1, ... What else do you need to require in order to get a condition that is necessary and sufficient? Convince yourself that these considerations correctly produce the first three Legendra polynomials up to an overall normalization factor.

hint: Make a power-series ansatz and require that the series terminates.

(4 points)

2.3.3. Associated Legendre functions

note: When comparing with the reference book by Abramowitz and Stegun, note that their $P_{\ell}^m(x)$ equals $(-)^{3m/2}$ times our $P_{\ell}^m(x)$.

Show that

$$\left(\sqrt{1-x^2}\,\frac{d}{dx}\,-m\,\frac{x}{\sqrt{1-x^2}}\right)\,P_\ell^m(x) = (\ell+m)(\ell-m+1)\,P_\ell^{m-1}(x)$$

hint: First differentiate Legendre's ODE m-1 times to show that

$$(1-x^2)\frac{d^{m+1}}{dx^{m+1}}P_n(x) - 2mx\frac{d^m}{dx^m}P_n(x) + (n+m)(n-m+1)\frac{d^{m-1}}{dx^{m-1}}P_n(x) = 0$$

Then use this in evaluating $\sqrt{1-x^2}\,dP_\ell^m(x)/dx.$

(3 points)

... /over

2.3.4. Spherical harmonics

Prove that the sperical harmonics have the following properties:

$$Y_{\ell}^{m}(\Omega)^{*} = (-)^{m} Y_{\ell}^{-m}(\Omega)$$
(1)

$$\cos\theta Y_{\ell}^{m}(\Omega) = \left(\frac{(\ell+1-m)(\ell+1+m)}{(2\ell+1)(2\ell+3)}\right)^{1/2} Y_{\ell+1}^{m}(\Omega) + \left(\frac{(\ell-m)(\ell+m)}{(2\ell-1)(2\ell+1)}\right)^{1/2} Y_{\ell-1}^{m}(\Omega)$$
(2)

$$\sin\theta \, e^{\pm i\varphi} \, Y_{\ell}^{m}(\Omega) = \pm \left(\frac{(\ell \mp m - 1)(\ell \mp m)}{(2\ell - 1)(2\ell + 1)} \right)^{1/2} Y_{\ell-1}^{m\pm 1}(\Omega) \mp \left(\frac{(\ell \pm m + 1)(\ell \pm m + 2)}{(2\ell + 1)(2\ell + 3)} \right)^{1/2} Y_{\ell+1}^{m\pm 1}(\Omega) \, (3)$$

$$\hat{L}_{\mp} Y_{\ell}^{m}(\Omega) = ((\ell \pm m)(\ell \mp m + 1))^{1/2} Y_{\ell}^{m \mp 1}(\Omega)$$
(4)

where

$$\hat{L}_{\mp} = e^{\mp i\varphi} \left[\mp \frac{\partial}{\partial \theta} + i \cot \theta \, \frac{\partial}{\partial \varphi} \right]$$

hint: Use the properties of the associated Legendre functions we quoted in ch.3 §3.2, as well as Problem 2.3.3.

(9 points)

2.3.5. Field due to distant charges

Consider the electric field generated by a charge density $\rho(\mathbf{y})$ that vanishes inside a sphere with radius r_0 : $\rho(\mathbf{y}) = 0$ for $|\mathbf{y}| \leq r_0$. Show that

- a) If ρ is invariant under parity operations, $\rho(-\mathbf{y}) = \rho(\mathbf{y})$, then the electric field at the origin vanishes.
- b) If $\rho(\boldsymbol{y})$ is invariant under rotations about the z-axis through multiples of an angle α with $|\alpha| < \pi$, then the field-gradient tensor at the origin has the form $\varphi_{ij}(\boldsymbol{x}=0) = \begin{pmatrix} \varphi & 0 & 0\\ 0 & \varphi & 0\\ 0 & 0 & -2\varphi \end{pmatrix}$
- c) If $\rho(\mathbf{y})$ has cubic symmetry, i.e., if $\rho(\mathbf{y})$ is invariant under rotations through $\pi/2$ about any of the three axes x, y, and z, then the field-gradient tensor at the origin vanishes.

(6 points)

(1-x1)y4-2xy + 2y = 0 2.3.2.1 asch: y(x) = E c.xh $\sum_{k=2}^{\infty} h(k-1) \cdot Q_{L} \times \sum_{k=2}^{\infty} h(k-1) \cdot Q_{L} \times \sum_{k=1}^{\infty} h$ (\prime) $= \sum_{k=1}^{\infty} \left[(h+1)(h+1)e_{k+2} - h(h-1)e_{k} - 2he_{k} + 2e_{k} \right] \times h$ $= \underbrace{\bigcup_{i=1}^{\infty} \left[(h+1)(h+1)(h+1)(h+1) - \lambda - (h(h+1) - \lambda)(h+1)(h+1)(h+1)(h+1) - \lambda \right] \times \underbrace{\bigcup_{i=1}^{n} \left[(h+1)(h+1)(h+1)(h+1)(h+1) - \lambda \right]}_{i=1}$ -> $a_{h+2} = \frac{h(h+1)-\lambda}{(h+1)(h+1)} a_h$ ruma nlehie (i)~ Neurscy ed uffinit for Un unis to timich is (i) $\lambda = h(h+i)$ with h=0,1,...(ii) as = 0 for h = un co = 0 for the old

 $\frac{duch}{dt} : h=0: \quad c_{0}=1 \implies 0 \quad a_{1}=0 \implies 0 \quad a_{2}=0 \quad d_{1}=0 \quad \forall h=0$ $\frac{c_{1}=0 \implies 0 \quad c_{2n+1}=0 \quad \forall h=0}{P_{0}(x)=1} \quad \sqrt{1-\frac{1}{2}} \quad \sqrt{1-\frac{1}{2}}$

(')

P23.3

p21.4-1

73

-1),x_-

0

(1)

 \bigcirc

2.3.4.) Stort vill lim definition of lim sphenical Lemonics

$$\frac{Y_{e}^{m}(R) - N_{e}^{m} e^{im\varphi} P_{e}^{m}(los)}{Y_{e}^{m}(los)}$$
vill $N_{e}^{m} = \left(\frac{(l\ell+1)(\ell-n)!}{4\pi(\ell+n)!}\right)^{n} \in \mathbb{R}$, $P_{e}^{m} \in \mathbb{R}$ arooc. Legal
 f_{e}^{ls}

(1)
$$\underline{Y}_{e}^{m}(R)^{*} = N_{e}^{m}e^{-imq}P_{e}^{m}(\omega d)^{*}$$

 $\underline{Y}_{e}^{m}(R)^{*} = N_{e}^{m}e^{-imq}\frac{(l+m)!}{(l-m)!}(-)^{m}P_{e}^{-m}(\omega d)$
 $= N_{e}^{m}e^{-imq}\frac{(l+m)!}{(l-m)!}\binom{l}{(l-m)!}\binom{l}{(l-m)!}\binom{l}{(l-m)!}\binom{l}{(l-m)!}$
 $= (-)^{m}N_{e}^{-m}P_{e}^{-m}(\omega d) = (-)^{m}Y_{e}^{-m}(\omega d)$

$$= (-)^{m} N_{c}^{-m} P_{c}^{-m} (wsl) = (-)^{m} Y_{c}^{-m} (wsl)$$

$$(1) \quad \underbrace{u_{5} \pounds \ }_{\mathcal{L}} \underbrace{(R)}_{\mathcal{L}} = N_{\mathcal{L}} \stackrel{u}{=} \underbrace{v_{1}}_{\mathcal{L}} \frac{\gamma}{2} \underbrace{P_{\mathcal{L}}} \left(\frac{1}{2}\right) \\ = N_{\mathcal{L}} \stackrel{u}{=} \underbrace{v_{1}}_{\mathcal{L}} \frac{\gamma}{2} \underbrace{\left(\frac{1}{2} + 1 - u_{1}}_{\mathcal{L}+1} \right) \underbrace{P_{\mathcal{L}+1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right) + \frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right) \\ = \underbrace{V_{\mathcal{L}}}_{\mathcal{L}+1} \left(\frac{1}{2}\right) \frac{1}{2} \underbrace{\frac{1}{2} + 1 - u_{1}}_{\mathcal{L}+1} \frac{N_{\mathcal{L}}}{N_{\mathcal{L}+1}} + \underbrace{V_{\mathcal{L}}}_{\mathcal{L}+1} \left(\frac{1}{2}\right) \frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \frac{N_{\mathcal{L}}}{N_{\mathcal{L}+1}} \\ = \underbrace{\left(\underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\underbrace{\frac{1}{2} - u_{1}}\right) + \underbrace{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!}{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!} \frac{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!}{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right) \\ + \underbrace{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!}{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!} \frac{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!}{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right) \\ = \underbrace{\left(\frac{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!}{\left(\frac{1}{2} + u_{1}\right)!}\right)!}{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right)!}{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right)!}{\left(\underbrace{\frac{1}{2} + u_{1}}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right)!} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right)!} \underbrace{\frac{1}{2} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{1}{2}\right)!} \underbrace{\frac{1}{2} + u_{1}}_{\mathcal{L}+1} \left(\frac{$$

p7.34-2

$$(3) \underbrace{i:\mathcal{J}_{L}}_{L} \underbrace{i:\mathcal{$$

p2.3.2-3

-

1.1

• 🖸

$$- N_{e}^{m} e^{(m-1)\varphi} \left[\overline{1-2^{1}} \frac{d}{2^{2}} - m \frac{2}{\sqrt{1-2^{2}}} \right] P_{e}^{m}(2)$$

$$R_{v}^{k} e^{(m-1)\varphi} (\lambda + m)(\lambda - m + 1) P_{e}^{m-1}(2)$$

$$- \frac{N_{e}^{m}}{N_{e}^{m-1}} (\lambda + m)(\lambda - m + 1) \frac{1}{2^{e}} (2)$$

$$= \left(\frac{(\ell - m + 1)!}{(\ell - m + 1)!} (\lambda + m)! (\lambda - m + 1)^{2} \right)^{n} \frac{1}{2^{e}} (2)$$

$$= \left(\frac{(\ell - m + 1)!}{(\ell - m + 1)!} (\lambda + m)! (\lambda - m + 1)^{2} \right)^{n} \frac{1}{2^{e}} (2)$$

$$= \left(\frac{(\ell - m + 1)!}{(\ell - m + 1)!} (\lambda + m)! (\lambda - m + 1)^{2} \right)^{n} \frac{1}{2^{e}} (2)$$

$$= \left(\frac{(\ell - m + 1)!}{(\ell - m + 1)!} (\lambda + m) \right)^{n} \frac{1}{2^{e}} (2)$$

$$= \left(\frac{(\ell - m + 1)!}{(\ell - m + 1)!} (\lambda + m) \right)^{n} \frac{1}{2^{e}} (2)$$

$$= \left(\frac{(\ell - m + 1)!}{(\ell - m + 1)!} (\lambda + m) \right)^{n} \frac{1}{2^{e}} (2)$$

$$= \left(\frac{(\ell - m + 1)!}{(\ell - m + 1)!} (\lambda + m) \right)^{n} \frac{1}{2^{e}} (2)$$

$$\hat{L}_{+} \underline{Y}_{L}^{(m)}(\mathcal{H}) = \left(-\hat{L}_{-} \underline{Y}_{L}^{(m)}(\mathcal{H})\right)^{m}$$

$$\stackrel{(1)}{=} \left((-)^{m+1}\hat{L}_{-} \underline{Y}_{L}^{(m)}(\mathcal{H})\right)^{m}$$

$$\stackrel{(+)}{=} \left(-)^{m+1}\left((\mathcal{L}+m+1)(\mathcal{L}-m)\right)^{m}\underline{Y}_{L}^{(m)}(\mathcal{H})$$

$$\stackrel{(1)}{=} \left((\mathcal{L}+m+1)(\mathcal{L}-m)\right)^{m}\underline{Y}_{L}^{(m)}(\mathcal{H})$$

p2.3.5-1

 $\varphi(\vec{x}) - \int d\vec{j} \frac{J(\vec{j})}{|\vec{x}-\vec{j}|} = \varphi(\vec{x}-0) + \vec{x} \cdot \nabla \varphi \Big|_{\vec{x}=0} + \frac{1}{2} \frac{\chi_i \chi_i}{\chi_i} \frac{\partial^2 \varphi}{\partial \chi_i \partial \chi_i} \Big|_{\vec{x}=0} + \cdots$ 2.2.5.) $= \varphi_0 + \varphi_1(\bar{x}) + \varphi_2(\bar{x}) + \dots$ $0) \quad g(\underline{z}) = g(-\underline{z}) \quad \longrightarrow \quad \varphi(-\underline{z}) = \int d\underline{z} \frac{g(\underline{z})}{|\underline{x}+\underline{y}|} = \int d\underline{z} \frac{g(-\underline{z})}{|\underline{x}-\underline{y}|} = \varphi(\underline{x})$ -> All has odd i x vanish, i perhider E.O ()b) fij is red symmetic as I wordinal sych and let Pij is diagonal \bigcirc q(x) obys loplon's ag + Ixiero ~> E 4::0 $= \varphi_{ij} \text{ Los } kn \text{ form } \varphi_{ij} = \begin{pmatrix} \varphi_{+} + \varphi_{-} & 0 & 0 \\ 0 & \varphi_{+} - \varphi_{-} & 0 \\ 0 & 0 & -2\varphi_{+} \end{pmatrix}$ (\mathbf{i}) wher y== 2 (955-422) -> q1(x)= 1 r 1 2 w q (q+q-) + { r 1 ~ 1 ~ ~ ~ ~ (q+-q-) + - r will (-29+) $= \frac{1}{2}r^{2}\left[\left(1-\frac{1}{2}\omega^{2}\theta\right)\varphi_{+} + \frac{1}{2}\omega^{2}\theta_{+}\varphi_{-}\right]$ $(\mathbf{1})$ Rotative ivenien of \$(5) iphis rotative ivenien of $\varphi(\bar{x})$, at is perhider of $\varphi_2(\bar{x})$

p-2.3.5-2

े दिन

 (\cdot)

$$= \frac{\varphi_{L}(r, \vartheta, \varphi + \kappa)}{\varphi_{L}(r, \vartheta, \varphi)} = \frac{1}{2}r^{2}\left[\left[1-2\ln^{2}\vartheta\right]\varphi_{+} + \ln^{2}\vartheta \ln 2(\varphi + \vartheta)\varphi_{-}\right]$$

$$= \frac{\varphi_{L}(r, \vartheta, \varphi)}{\varphi_{-}} = \frac{\varphi_{-}\ln(2\varphi + 2\kappa)}{\varphi_{-}} = \frac{\varphi_{-}\ln(2\varphi - 2\pi)}{\varphi_{-}} = 0$$

$$= \frac{\varphi_{-}\ln(2\varphi + 2\kappa)}{\varphi_{-}} = \frac{\varphi_{-}\ln(2\varphi - 2\pi)}{\varphi_{-}} = 0$$

$$= \frac{\varphi_{-}\ln(2\varphi + 2\kappa)}{\varphi_{-}} = \frac{\varphi_{-}\ln(2\varphi - 2\pi)}{\varphi_{-}} = \frac{\varphi_{-}\ln(2\varphi - 2\pi)}{\varphi_{-}} = 0$$

$$= \frac{\varphi_{-}\ln(2\varphi + 2\kappa)}{\varphi_{-}} = \frac{\varphi_{-}\ln(2\varphi - 2\pi)}{\varphi_{-}} = \frac{\varphi_{-}\ln(2\varphi - 2\pi)}{\varphi_{-}\ln(2\varphi - 2\pi)} = \frac{\varphi_{-}\ln(2\varphi - 2\pi)}$$