1.1.5 Equivalence relations

Consider a relation \sim on a set X as in ch. $1 \S 1.3$ def. 1 , but with the properties
i) $x \sim x \quad \forall x \in X \quad$ (reflexivity)
ii) $x \sim y \Rightarrow y \sim x \quad \forall x, y \in X \quad$ (symmetry)
iii) $(x \sim y \wedge y \sim z) \Rightarrow x \sim z \quad$ (transitivity)

Such a relation is called an equivalence relation. Which of the following are equivalence relations?
a) n divides m on \mathbb{N}.
b) $x \leq y$ on \mathbb{R}.
c) g is perpendicular to h on the set of straight lines $\{g, h, \ldots\}$ in the cartesian plane.
d) a equals b modulo n on \mathbb{Z}, with $n \in \mathbb{N}$ fixed.
hint: " a equals b modulo n ", or $a=b \bmod (n)$, with $a, b \in \mathbb{Z}, n \in \mathbb{N}$, is defined to be true if $a-b$ is divisible on \mathbb{Z} by n; i.e., if $(a-b) / n \in \mathbb{Z}$.
(3 points)

1.1.6 Bounds for n !

Prove by mathematical induction that

$$
n^{n} / 3^{n}<n!<n^{n} / 2^{n} \quad \forall n \geq 6
$$

hint: $(1+1 / n)^{n}$ is a monotonically increasing function of n that approaches Euler's number e for $n \rightarrow \infty$.

1.1.7 All ducks are the same color

Find the flaw in the "proof" of the following
proposition: All ducks are the same color.
proof: $n=1$: There is only one duck, so there is only one color.
$n=m$: The set of ducks is one-to-one correspondent to $\{1,2, \ldots, m\}$, and we assume that all m ducks are the same color.
$n=m+1$: Now we have $\{1,2, \ldots, m, m+1\}$. Consider the subsets $\{1,2, \ldots, m\}$ and $\{2, \ldots, m, m+1\}$. Each of these represent sets of m ducks, which are all the same color by the induction assumption. But this means that ducks $\# 2$ through m are all the same color, and ducks $\# 1$ and $m+1$ are the same color as, e.g., duck $\# 2$, and hence all ducks are the same color.
remark: This demonstration of the pitfalls of inductive reasoning is due to George Pólya (1888-1985), who used horses instead of ducks.

1.2.1 Pauli group

The Pauli matrices are complex 2×2 matrices defined as

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad, \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Now consider the set P_{1} that consists of the Pauli matrices and their products with the factors -1 and $\pm i$:

$$
P_{1}=\left\{ \pm \sigma_{0}, \pm i \sigma_{0}, \pm \sigma_{1}, \pm i \sigma_{1}, \pm \sigma_{2}, \pm i \sigma_{2}, \pm \sigma_{3}, \pm i \sigma_{3}\right\}
$$

Show that this set of 16 elements forms a (nonabelian) group under matrix multiplication called the Pauli group. It plays an important role in quantum information theory.

