1.4.2. The space of rank-2 tensors

a) Prove the theorem of ch. $1 \S 4.3$: Let V be a vector space V of dimension n over K. Then the space of rank-2 tensors, defined via bilinear forms $f: V \times V \rightarrow K$, forms a vector space of dimension n^{2}.
b) Consider the space of bilinear forms f on V that is equivalent to the space of rank- 2 tensors, and construct a basis of that space.
hint: On the space of tensors, define a suitable addition and multiplication with scalars, and construct a basis of the resulting vector space.

1.4.3. Cross product of 3 -vectors

Let $x, y \in \mathbb{R}_{3}$ be vectors, and let $\epsilon_{i j k}$ be the Levi-Civita symbol. Show that the (covariant) components of the cross product $x \times y$ are given by

$$
\begin{equation*}
(x \times y)_{i}=\epsilon_{i j k} x^{j} y^{k} \tag{1point}
\end{equation*}
$$

1.4.5. \mathbb{R} as a metric space

Consider the reals \mathbb{R} with $\rho: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ defined by $\rho(x, y)=|x-y|$. Show that this definition makes \mathbb{R} a metric space.

1.4.6. Limits of sequences

a) Show that a sequence in a metric space has at most one limit.
hint: Assume there are two limits, and use the triangle inequality to show that they must be the same.
b) Show that every sequency with a limit is a Cauchy sequence.

