(6 points)

Problem Assignment # 5 10/25/2023due 11/01/2023

This homework assignment doubles as the Midterm. Treat it like any other homework assignment, but please do not collaborate on this one.

1.2.5 Abelian groups

Let (G, \vee) be a group with neutral element e. Let $a \in G$ be a fixed element, and define a mapping $\varphi : G \to G$ by $\varphi(x) = a \vee x \vee a^{-1} \quad \forall x \in G$.

- a) Show that φ defines an automorphism on G, called an *inner automorphism*.
- b) Show that abelian groups have no inner automorphisms except for the identity mapping $\varphi(x) = x$.
- c) Let $g \lor g = e \forall g \in G$. Prove that G is abelian.

1.4.7. Banach space

Let B be a K-vector space ($k = \mathbb{R}$ or \mathbb{C}) with null vector θ . Let $|| \dots || : B \to \mathbb{R}$ be a mapping such that

- (i) $||x|| \ge 0 \forall x \in B$, and ||x|| = 0 iff $x = \theta$.
- (ii) $||x + y|| \le ||x|| + ||y|| \forall x, y \in \mathbf{B}.$
- (iii) $||\lambda x|| = |\lambda| \cdot ||x|| \quad \forall x \in \mathbf{B}, \lambda \in \mathbf{K}.$

Then we call $|| \dots ||$ a **norm** on B, and ||x|| the **norm** of x.

Further define a mapping $d : B \times B \to \mathbb{R}$ by

 $d(x,y) := ||x - y|| \ \forall \ x, y \in \mathcal{B}$

Then we call d(x, y) the **distance** between x and y.

a) Show that d is a metric in the sense of §4.5, i.e., that every linear space with a norm is in particular a metric space.

If the normed linear space B with distance/metric d is complete, then we call B a **Banach space** or **B-space**.

b) Show that \mathbb{R} and \mathbb{C} , with suitably defined norms, are B-spaces. (For the completeness of \mathbb{R} you can refer to §4.5 example (3), and you don't have to prove the completeness of \mathbb{C} unless you insist.)

Now let B^{*} be the dual space of B, i.e., the space of linear forms ℓ on B, and define a norm of ℓ by

 $||\ell|| := \sup_{||x||=1} \{|\ell(x)|\}$

c) Show that the such defined norm on B^{*} is a norm in the sense of the norm defined on B above.

Note: In case you're wondering: B^* is complete, and hence a B-space, but the proof of completeness is difficult.

(8 points)