Problem Assignment # 6due $\frac{11/01/2023}{11/08/2023}$

1.4.9. Lorentz transformations in M_2

Consider the 2-dimensional Minkowski space M_2 with metric $g_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and 2×2 matrix representations of the pseudo-orthogonal group O(1, 1) that leaves g invariant.

a) Let $\sigma, \tau = \pm 1$, and $\phi \in \mathbb{R}$. Show that any element of O(1,1) can be written in the form

$$D_{\sigma,\tau}(\phi) = \begin{pmatrix} 1 & 0 \\ 0 & \tau \end{pmatrix} \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix} \begin{pmatrix} \sigma & 0 \\ 0 & 1 \end{pmatrix}$$

To study O(1,1) it thus suffices to study the matrices $D(\phi) := D_{+1,+1} = \begin{pmatrix} \cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi \end{pmatrix}$.

- b) Show explicitly that the set $\{D(\phi)\}$ forms a group under matrix multiplication (which is a subgroup of O(1,1) that is sometimes denoted by $SO^+(1,1)$), and that the mapping $\phi \to D(\phi)$ defines an isomorphism between this group and the group of real numbers under addition.
- c) Show that there exists a matrix J (called the *generator* of the subgroup) such that every $D(\phi)$ can be written in the form

 $D(\phi) = e^{J\phi}$

and determine J explicitly.

1.4.11. Special Lorentz transformations in M_4

- \

Consider the Minkowski space M_4 .

a) Show that the following transformations are Lorentz transformations:

$$\begin{array}{l} \text{i)} \ D^{\mu}_{\ \nu} = \begin{pmatrix} 1 & 0 \\ 0 & R^{i}_{\ j} \end{pmatrix} \equiv R^{\mu}_{\ \nu} \quad (\text{rotations}) \\ \text{where } R^{i}_{\ j} \text{ is any Euclidian orthogonal transformation.} \\ \text{ii)} \ D^{\mu}_{\ \nu} = \begin{pmatrix} \cosh \alpha & \sinh \alpha & 0 & 0 \\ \sinh \alpha & \cosh \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \equiv B^{\mu}_{\ \nu} \quad (\text{Lorentz boost along the x-direction}) \\ \text{with } \alpha \in \mathbb{R}. \\ \text{iii)} \ D^{\mu}_{\ \nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \equiv P^{\mu}_{\ \nu} \quad (\text{parity}) \\ \text{iv)} \ D^{\mu}_{\ \nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \equiv T^{\mu}_{\ \nu} \quad (\text{time reversal}) \\ \end{array}$$

(6 points)

... /over

- b) Let L be the group of all Lorentz transformations. Show that the rotations defined in part a) i) are a subgroup of L, and so are the Lorentz boosts defined in part a) ii).
- c) Let $I^{\mu}_{\nu} = \delta^{\mu}_{\nu}$ be the identity transformation. Show that the sets $\{I, P\}, \{I, T\}$, and $\{I, P, T, PT\}$ are subgroups of L.

1.5.1. Transformations of tensor fields

- a) Consider a covariant rank-*n* tensor field $t_{i_1...i_n}(x)$ and find its transformation law under normal coordinate transformations that is analogous to §5.1 def.1; i.e., find how $\tilde{t}_{i_1...i_n}(\tilde{x})$ is related to $t_{i_1...i_n}(x)$.
- b) Convince yourself that your result is consistent with the transformation properties of (i) a covector x_i (the case n = 1), and (ii) the covariant components of the metric tensor g_{ij} .

(4 points)

1.5.2. Curl and divergence

Show that the curl and the divergence of a vector field transform as a pseudovector field and a scalar field, respectively.

1.5.3. Tensor products, and tensor traces

Prove Propositions 1 and 2 from ch. 1 §5.3.

(4 points)

(4 points)

(3 points)