2.4.1. 1-d Fourier transforms

Consider a function f of one real variable x. Calculate the Fourier transforms $\hat{f}(k)=\int d x e^{-i k x} f(x)$ of the following functions:
a) $f(x)=\left\{\begin{array}{ll}1 & \text { for }|x| \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.
b) $f(x)=\left\{\begin{array}{ll}1-|x| & \text { for }|x| \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$.
c) $f(x)=e^{-\left(x / x_{0}\right)^{2}}$.

2.4.2. 3-d Fourier transforms

Consider a function f of one vector variable $\boldsymbol{x} \in \mathbb{R}^{3}$. The Fourier transform \hat{f} of f is defined as

$$
\hat{f}(\boldsymbol{k})=\int d \boldsymbol{x} e^{-i \boldsymbol{k} \cdot \boldsymbol{x}} f(\boldsymbol{x})
$$

Calculate the Fourier transforms of the following functions:
a)

$$
f(\boldsymbol{x})=\left\{\begin{array}{ll}
1 & \text { for } r<r_{0} \\
0 & \text { otherwise }
\end{array} \quad(r=|\boldsymbol{x}|)\right.
$$

b)

$$
f(\boldsymbol{x})=1 / r
$$

hint: Consider $g(\boldsymbol{x})=\frac{1}{r} e^{-r / r_{0}}$ and let $r_{0} \rightarrow \infty$.

2.4.3. More 1-d Fourier transforms

Consider a function of time $f(t)$ and define its Fourier transform

$$
\hat{f}(\omega):=\int d t e^{i \omega t} f(t)
$$

and its Laplace transform $F(z)$ as

$$
F(z)= \pm i \int d t e^{i z t} f_{ \pm}(t) \quad(\pm \text { for } \operatorname{sgn}(\operatorname{Im} z)= \pm 1)
$$

with z a complex frequency and $f_{ \pm}(t)=\Theta(\pm t) f(t)$. Further define

$$
F^{\prime \prime}(\omega)=\frac{1}{2 i}[F(\omega+i 0)-F(\omega-i 0)] \quad, \quad F^{\prime}(\omega)=\frac{1}{2}[F(\omega+i 0)+F(\omega-i 0)]
$$

Calculate $F^{\prime \prime}(\omega)$ and $F^{\prime}(\omega)$ for
a) $f(t)=e^{-|t| / \tau}$
b) $f(t)=e^{i \omega_{0} t}$
hint: $\lim _{\epsilon \rightarrow 0} \epsilon /\left(x^{2}+\epsilon^{2}\right)=\pi \delta(x)$, with $\delta(x)$ the familiar Dirac delta-function, which we will study in detail in Week 10.
Show that in both cases $\int \frac{d \omega}{\pi} \frac{F^{\prime \prime}(\omega)}{\omega}=F^{\prime}(\omega=0)$.
note: These concepts are important for the theory of response functions.

