1.4.9. Lorentz transformations in M_{2}

Consider the 2-dimensional Minkowski space M_{2} with metric $g_{i j}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and 2×2 matrix representations of the pseudo-orthogonal group $O(1,1)$ that leaves g invariant.
a) Let $\sigma, \tau= \pm 1$, and $\phi \in \mathbb{R}$. Show that any element of $O(1,1)$ can be written in the form

$$
D_{\sigma, \tau}(\phi)=\left(\begin{array}{cc}
1 & 0 \\
0 & \tau
\end{array}\right)\left(\begin{array}{cc}
\cosh \phi & \sinh \phi \\
\sinh \phi & \cosh \phi
\end{array}\right)\left(\begin{array}{cc}
\sigma & 0 \\
0 & 1
\end{array}\right)
$$

To study $O(1,1)$ it thus suffices to study the matrices $D(\phi):=D_{+1,+1}=\left(\begin{array}{cc}\cosh \phi & \sinh \phi \\ \sinh \phi & \cosh \phi\end{array}\right)$.
b) Show explicitly that the set $\{D(\phi)\}$ forms a group under matrix multiplication (which is a subgroup of $O(1,1)$ that is sometimes denoted by $\left.S O^{+}(1,1)\right)$, and that the mapping $\phi \rightarrow D(\phi)$ defines an isomorphism between this group and the group of real numbers under addition.
c) Show that there exists a matrix J (called the generator of the subgroup) such that every $D(\phi)$ can be written in the form

$$
D(\phi)=e^{J \phi}
$$

and determine J explicitly.
(6 points)

1.4.11. Special Lorentz transformations in M_{4}

Consider the Minkowski space M_{4}.
a) Show that the following transformations are Lorentz transformations:
i) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cc}1 & 0 \\ 0 & R^{i}\end{array}\right) \equiv R^{\mu}{ }_{\nu} \quad$ (rotations)
where $R^{i}{ }_{j}$ is any Euclidian orthogonal transformation.
ii) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}\cosh \alpha & \sinh \alpha & 0 & 0 \\ \sinh \alpha & \cosh \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \equiv B^{\mu}{ }_{\nu} \quad$ (Lorentz boost along the x-direction) with $\alpha \in \mathbb{R}$.
iii) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right) \equiv P_{\nu}^{\mu} \quad$ (parity)
iv) $D^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right) \equiv T^{\mu} \quad$ (time reversal)
b) Let L be the group of all Lorentz transformations. Show that the rotations defined in part a) i) are a subgroup of L, and so are the Lorentz boosts defined in part a) ii).
c) Let $I^{\mu}{ }_{\nu}=\delta^{\mu}{ }_{\nu}$ be the identity transformation. Show that the sets $\{I, P\},\{I, T\}$, and $\{I, P, T, P T\}$ are subgroups of L.

1.5.1. Transformations of tensor fields

a) Consider a covariant rank- n tensor field $t_{i_{1} \ldots i_{n}}(x)$ and find its transformation law under normal coordinate transformations that is analogous to $\S 5.1$ def.1; i.e., find how $\tilde{t}_{i_{1} \ldots i_{n}}(\tilde{x})$ is related to $t_{i_{1} \ldots i_{n}}(x)$.
b) Convince yourself that your result is consistent with the transformation properties of (i) a covector x_{i} (the case $n=1$), and (ii) the covariant components of the metric tensor $g_{i j}$.

1.5.2. Curl and divergence

Show that the curl and the divergence of a vector field transform as a pseudovector field and a scalar field, respectively.

1.5.3. Tensor products, and tensor traces

Prove Propositions 1 and 2 from ch. $1 \S 5.3$.
plica a-1
$1.49,0)$ let $\partial=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. For is to be a lount bafo, ar wost lave

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
c & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
a & c \\
b & \alpha
\end{array}\right)=\left(\begin{array}{cc}
0^{2}-b^{b} & c c-b \alpha \\
c c-b d & c^{2}-\alpha^{2}
\end{array}\right)
$$

(i) $c^{2}-b^{2}-1$
(ii) $c^{2}-d^{2}=-1$
(1)
(iii) cc-bd=0

Nou wrichs ril ϕ, whid wops \mathbb{R} one-ho-un who indl

$$
\begin{aligned}
& \Rightarrow \forall b \in \mathbb{R} \forall!\phi \in \mathbb{R}: \quad b=\omega h^{\prime} \phi \\
& (i) \rightarrow \quad a^{2}=1+b^{2}=1+i L^{2} \phi=\cos ^{2} \phi \quad a \quad t=t \cos (\phi, V= \pm
\end{aligned}
$$

Aneloguag,
(1)

Finely,

$$
\begin{aligned}
& \text { (iii) } \rightarrow 0=5 \cos l \phi \dot{l} \psi \psi-\tau \cos l \psi \operatorname{cil} \phi \\
& =\cos L \phi \text { iil } \psi-r e \cos l \psi \operatorname{hil}^{\prime} \phi \\
& =\cos (t \tau \phi) \operatorname{lil} \psi-\cos L \psi \operatorname{Ll}(5 \tau \phi) \\
& =\operatorname{sil}(\psi-5 \approx \phi) \rightarrow \psi=5 \tau \phi
\end{aligned}
$$

$$
\begin{aligned}
& =\underline{\left(\begin{array}{ll}
1 & 0 \\
0 & \tilde{r}
\end{array}\right) \lambda(\phi)\left(\begin{array}{ll}
r & 0 \\
0 & 1
\end{array}\right) \quad \text { vile } \xlongequal{\delta(\phi)}=\left(\begin{array}{cc}
\cos (\phi & \operatorname{ci} \phi \\
\operatorname{cil} \phi & \cos \phi
\end{array}\right), \phi \in \pi}
\end{aligned}
$$

p7t.9-2

$$
\rightarrow \partial\left(\phi_{1}\right) j\left(\phi_{2}\right)=\partial\left(\phi_{1}+\phi_{2}\right) \quad \text { conen }
$$

(ii) Ratrix melighichia is easonetion
(iii) $\Delta(\phi=0)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\mathbb{I}_{2}$ webled venot
(iv) $\Delta(-\phi)=\left(\begin{array}{cc}\omega L \phi & -\dot{\omega}(\phi \\ -\dot{L} L \phi & \cos l \phi\end{array}\right)$
el $\left(\begin{array}{cc}\cos l \phi & -\operatorname{cil} \phi \\ -\omega i l & \operatorname{wos} l \phi\end{array}\right)\left(\begin{array}{cc}\cos l \phi & \operatorname{cil} \phi \\ \operatorname{cil} \phi & \cos l \phi\end{array}\right) \cdot\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

$$
\rightarrow \Delta(-\phi)=(\Delta(\phi))^{-1} \quad \text { ivern } \quad
$$

$$
\Rightarrow\{J(\phi)\} \quad \therefore \text { a } j w-p s 0^{+}(1,1)
$$

(i), (iii), (iv) provich un inoworphin $50^{+}(1,1) \cong R(+$;
c)

$$
e^{\partial \phi}=\mathbb{1}_{2}+\gamma \phi+\frac{1}{2} J^{7} \phi^{2}+\ldots
$$

$$
\text { al } \cos \phi=1+\frac{1}{2} \phi^{2}+\frac{1}{4} \phi^{4}+\ldots, w i \phi \cdot \phi+\frac{1}{2!} \phi^{2}+\ldots
$$

in $\gamma^{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \sim y^{3}=\mathbb{I}_{2}, \gamma^{3}=j$, ate.

$$
\Rightarrow \underline{e^{\partial \phi}-\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & \phi \\
\phi & 0
\end{array}\right)+\left(\begin{array}{ccc}
\frac{1}{2} \phi^{2} & 0 \\
0 & \frac{1}{2} \phi^{2}
\end{array}\right)+\left(\begin{array}{cc}
0 & \frac{1}{j} \phi^{2} \\
j & \phi^{2} \\
j & 0
\end{array}\right)+\ldots . .}
$$

$$
=\left(\begin{array}{cc}
\cos (\phi & \operatorname{ci}(\phi \\
\operatorname{sic} \phi & \cos \phi
\end{array}\right)
$$

(1) $\rightarrow \gamma$ is Un pueretor of $\mathrm{SO}^{+}(1,1)$.

$$
\begin{aligned}
& \because \quad p-1.5 .11 .
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & -R^{\top} R
\end{array}\right)=\left(\begin{array}{c|c}
1 & 0 \\
\hline 0 & -1
\end{array}\right)=g_{\alpha \Delta}
\end{aligned}
$$

ii) $\xlongequal{B r_{\alpha} J+\nu B_{\alpha}{ }_{\alpha}}=\left(\begin{array}{cccc}\cos \alpha \alpha & 0 & 0 & \omega L_{\alpha} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \operatorname{cil} \alpha & 0 & 0 & \cos \alpha \alpha\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)$

0
$1)$

(1) (iv) $\underline{T_{\alpha} J_{1-\nu}^{-\nu}}=(-)^{2} p r_{\alpha I_{\mu \nu}} p_{A}^{\nu}=g_{\alpha A}$
b) RPy lears the thime coordinetes ivoniet, ad or hous lect then
(1) $R^{i} j$, form a gre p (tm PIty $161 I$) $\rightarrow\left\{R^{i} j\right\}$ is a hbgrope of L

(1)

plow
1.5.1., a) Tinen en vonies ungs to do U... One optix is to steort vill the busfonalix propery of contravaciet hiser frits, \$5.1, de un thi metric wore to hove the ridius:

$$
\begin{aligned}
& \text { 35.10) } 5.3 \\
& g_{i j_{1}} \cdots \lim _{\mu_{N}} d_{h_{1}}^{j_{1}} \ldots d_{h_{N}}^{j_{N}} t^{h_{1} \cdots h_{N}}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =(g \Delta)_{i_{1} \ell_{I}} \cdots(\rho \Delta)_{i_{N / N}} j^{\rho_{i l_{I}} \ldots 1^{\ell_{N} \ell_{N}} t_{\ell_{-} \ldots l_{N}}(\lambda)} \\
& 9 D \cdot 3^{T} T^{\prime}=
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(\left(I^{\top}\right)^{-1}\right)_{i_{I}}^{j_{1}} \cdots\left(D^{\top}\right)^{-1}\right)_{i_{N}}{ }^{j_{N}} \tau_{i_{1} \ldots j_{N}(x)}
\end{aligned}
$$

b) Jpacil on $n=1$:

$$
1+a^{-1} j
$$

(1)

$$
\begin{aligned}
& \left.=\left(0^{\top}\right)^{-1}\right)_{i}^{j} 1_{j i} x^{2}-\left(\left(J^{\top}\right)^{-1}\right)_{i}^{j} x_{j}
\end{aligned}
$$

p15.2
1.5.2.) Laviter the ware es Aefind is 55.2 :

$$
\text { (2) }=(\operatorname{del} \Delta) \lambda_{p}^{i} c p(x)
$$

$\rightarrow c^{i}(x+1)$ bus froms es a prolovetor finid.
Nou the dirigen: $\quad d(x)=\partial_{i} v^{i}(x)$

$$
\begin{aligned}
\rightarrow \underline{\underline{d}(\hat{x})} & \left.=\tilde{j}_{i} \hat{v}^{i}(\hat{x}) \cdot\left(\lambda^{-i}\right)^{-1}\right)_{i} j_{j} \partial_{j} \partial_{i} v^{\lambda}(x) \\
& =\underbrace{\left(\partial^{\top}\right)_{r}^{i}\left(\left(\partial^{\top}\right)_{i}^{-1}\right)_{j} v^{\lambda}(x)}_{=\delta_{h}^{j}}
\end{aligned}
$$

$$
\begin{aligned}
& c^{i}(x)=\varepsilon^{i j l} \partial_{j} v_{l}(x) \\
& \Rightarrow \frac{\tilde{c}^{i}(\tilde{x})}{\sin 2 i 5}=\tilde{\varepsilon}^{i j h} \tilde{\partial}_{j} \tilde{v}_{h}(\tilde{x}) \\
& =\hat{\varepsilon}^{i j l}\left(D^{-1}\right)_{j}^{l} \partial_{l}\left(D^{-1}\right)^{n} l_{\nu_{m}}(x) \\
& =\delta^{i} \tilde{\varepsilon}^{n j l}\left(D^{-1}\right)_{j}^{l}\left(D^{-1}\right)_{r}^{n} \partial_{l} v_{m}(x) \\
& =J_{p}^{i}\left(D^{-1}\right)_{n}^{p} \tilde{\varepsilon}^{n} j^{l}\left(J^{-1}\right)_{j}^{l}\left(J^{-1}\right)^{n} \partial_{l} \nu_{m}(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
& =(\text { dut } D) \downarrow_{p}^{i} \underbrace{\varepsilon^{p l m} \partial_{l} v_{m}(x)}_{-C P(x)}
\end{aligned}
$$

1.5.]) lavider the howr product

$$
u^{i_{1} \ldots i_{N+h}}=s^{i_{1} \ldots i_{N}} t^{i_{N+1} \ldots i_{N+h}}
$$

Let bole sod t be hars. itn

$$
\begin{align*}
& \tilde{u}^{i_{I} \ldots i_{N+h}}=\tilde{s}^{i_{I} \ldots i_{N}} \tilde{t}^{i_{N_{1}} \ldots i_{N H}} \\
& =j_{j_{1} \ldots}^{i_{N}} j_{j_{N}}^{i_{N}} g j_{\underline{\prime} \cdots j_{N}}^{i_{N_{N+1}}} \ldots j_{j_{N+1}}^{i_{N+h}} t^{j_{N+1} \cdots j_{N M M}} \tag{女}
\end{align*}
$$

$\rightarrow u$ is e ruh $-(N, h)$ hrow

Nous uppion 1 is a penlohwo ch t a lumbor, wr vin urrse. The Un rhs of (1) ghb undiphid
(1) by det $\lambda \rightarrow 0$ uiscpndolutw

If bole sedt on probolusins, then kn rla of (d, (1) jub micplid by $(d a t b)^{2}=I \rightarrow$ u is a le tor N: puors prop.I fou \$5.2.
Nou whilis

$$
u^{h_{I} \ldots h_{N}}=t_{i}{ }^{i \lambda_{I} \ldots \lambda_{N}}=g_{i j} t \ddot{j}_{I} \ldots h_{N}
$$

Let t be a hwer. inn

$$
\begin{aligned}
& \left.=\left(D^{-1}\right)^{T}\right)_{i}^{0}\left(\left(D^{-1}\right)^{T}\right)_{j}^{p} j_{0} D_{m}^{i} D_{n}^{i} \lambda_{l_{1}}^{h_{1}} \cdots \Delta^{\lambda_{N}} t_{N} t^{m n} l_{\underline{l}} \cdots l_{N}
\end{aligned}
$$

$$
\begin{align*}
& \quad \operatorname{plSD-2} \\
& =\lambda^{l_{1}} \ldots \Delta_{l_{1}}^{k_{N}} l_{N} g_{\operatorname{mnn}} t^{\min l_{I} \ldots \ell_{N}} \\
& =\Delta^{k_{I} \ldots l_{I} \ldots d_{l_{N}} u^{l_{I} \ldots l_{N}}} \tag{d0}
\end{align*}
$$

$\Rightarrow \underline{u \text { is a how of reah } N}$
If t is a prodohoror, the the rla of $|t a\rangle$ jub unlephire of otet D
\bigcirc
$\rightarrow u$ is a pholohtar of ruch N
(1) x_{i} puous popp 2 fore 553

