Problem Assignment \# 1

01/10/2024
due 01/17/2024

0.2.1 The brachistochrone problem

A point mass glides without friction on an inclined plane (inclination angle α) from point P_{1} to point P_{2} on a path \mathfrak{C} according to Galilean mechanics.
a) Use energy conservation to find the velocity as a function of y, using the coordinate system in the sketch.
b) Write the passage time from P_{1} to P_{2} in the form

$$
T=\int_{x_{1}}^{x_{2}} d x L\left(y, y^{\prime}\right)
$$

with y considered a function of x and $y^{\prime}=d y / d x$, and determine the Lagrangian L. Use the fact that Jacobi's integral is constant to find an ODE for y.
c) Substitute $y^{\prime}=\cot t$ to write the brachistochrone, i.e., the solution of the ODE from part b), in a parametric form, $y=y(t), x=x(t)$.

d) Express the passage time as a function of the value t_{2} of the brachistochrone parameter in the point P_{2} (or, equivalently, as a function of $y_{2}^{\prime}=(d y / d x)_{\mathrm{P}_{2}}$, which has a more intuitive meaning).
e) Find the passage time for the shortest path from P_{1} to P_{2} (as opposed to the brachistochrone) as a function of t_{2}.
f) Discuss the ratio of the two passage times as a function of t_{2}.
hint: The parameter value t_{2} for the brachistochrone at the end point P_{2} is a known function of y_{2}^{\prime}. It therefore suffices to discuss the passage time as a function of t_{2}.
(18 points)

0.2.2 Dido's problem

An area A in the $x-y$-plane is enclosed by a straight line between two points O and P that are a distance d apart, and a path \mathfrak{C} with end points O and P and length $\ell>d$. Find the path \mathfrak{C} that maximizes A .

(6 points)

0.2.3 Geodesics on the 2 -sphere

Show that the geodesics on the 2 -sphere are great circles.
hint: There are various ways of doing this. One is to set up the problem of geodesics in \mathbb{R}_{3} with the constraint that the desired paths $\vec{x}(t)$ must lie on the sphere. Now use the Euler-Lagrange equations for the constrained problem to show that $\vec{\ell}=\vec{x} \times \vec{p}=$ const, where $\vec{p}=\partial L / \partial \dot{\vec{x}}$, with L the appropriate Lagrangian.

$$
p-0.2 .1-1
$$

0.2.I.) costrait: $z=y \omega \alpha$
let $P_{1}=(0,0,0)$ islg
a) Evergy wastwalia \rightarrow

$$
\frac{m}{i} v^{\prime}=-m g t=-m g y w_{\alpha}
$$

b) Lng of infinitesind poll sypurt: $d l=d t \sqrt{\dot{x}^{2}+j^{2}}$
(1) Yime weeked to move acros $d l: \quad d T=d l / v(y)$
\rightarrow Pessor \tilde{t}_{+}hium

$$
\begin{aligned}
\underline{I} & =\int_{t_{-}}^{t_{t}} d t \frac{1}{v(y)} \sqrt{\dot{x}^{\prime}+j^{2}}=\int_{x_{1}}^{x_{2}} d x \frac{1}{v(y)} \sqrt{1+j^{\prime 2}} \\
& \left.=\int_{x_{1}}^{x_{2}} d x L\left(y_{1} y^{\prime}\right) \quad \text { wiu } L\left(y_{1}\right)^{\prime}\right)=\frac{1}{v(j)} \sqrt{1+j^{\prime \prime}}
\end{aligned}
$$

LO j2.Jrmerk (j) (ii) ~s fowbi's itugrel is e whatat of motic, i.e.,

$$
\begin{aligned}
& H\left(y_{1}^{\prime}\right)=y^{\prime} \frac{\partial L}{\partial y^{\prime}}-L=\frac{y^{\prime 2}}{v(y) \sqrt{1+j^{\prime 2}}}-\frac{1}{v(j)^{\prime}} \sqrt{1+j^{\prime 2}}=\frac{-1}{v(y) \sqrt{1+y^{\prime 2}}}=\operatorname{con} \\
& \rightarrow y\left(1+y^{\prime 2}\right)=\cos t=: c_{1}<0
\end{aligned}
$$

$$
p-0.2\{-2
$$

c) $\left.\operatorname{mbs} \operatorname{Lin} L y^{\prime}=c t g t, t=\operatorname{arcct}\right] j^{\prime}$
(1)

$$
\rightarrow y=\frac{c_{1}}{1+y^{\prime 2}}=\frac{c_{1}}{1+c_{1}^{2} t}=c_{1} n^{2} t=\frac{1}{2} c_{1}(1-\cos (t)
$$

$$
d x=\frac{d y}{y^{\prime}}=\frac{2 c_{1} \omega t \cos t d t}{c y t}=2 c_{I} \omega^{\prime} t d t=c_{1}(1-\cos (t) d t
$$

(1)

$$
\rightarrow \underline{x}=c_{2}+c_{1} t-\frac{1}{2} c_{1} \omega i t=\frac{1}{2} c_{1}\left(2 t-\omega^{\prime} 2 t\right)+c_{2}
$$

inilil conchitios. $y_{i}=y(t=0)=0 \mathrm{l}$

$$
x_{1}=x(t=0)=c_{2} \stackrel{!}{=} 0 \sim c_{2}=0
$$

Let $c=\frac{1}{2} c_{I} \rightarrow \begin{array}{ll}x(t)=c(1 t-i(t) & \text { Irechisto kione } \\ y(t)=c(1-\cos (t) & \text { iporametic fin }\end{array}$
racek: (1) Mis is for $x_{2}<0$

$$
\begin{array}{r}
\text { ff } x_{2}>0, \text { winds } \\
t<0
\end{array}
$$

(2) C is c sech fector Uet moat be choro tal Kot P_{2} hui an the curros.

To buij his i staderd form, ht $\tilde{\tau}=2 t-\bar{\delta}, \hat{x}=-x+\sigma C$

$$
\left.\begin{array}{rl}
\leadsto \underline{\hat{x}(\hat{c})} & =-c(\hat{\imath}+\hat{x}-i(\hat{v}+5))+\hat{\bar{c}}=-c(\hat{v}+\omega \hat{\imath}) \\
y(\hat{\imath}) & =c(1-\cos (\tilde{v}+5))=c(1+\cos \hat{\imath})=-c(-\underline{1}-\cos \hat{v})
\end{array}\right\}-y \cos
$$

(ब1) $\left.{ }^{\circ}, ~ P \operatorname{Pate}\right)^{2} \rightarrow$

$$
\begin{aligned}
& x(t)=c(2 t-w(t) \\
& y(t)=c\left(1-w_{2}(t)\right.
\end{aligned}
$$

$c<0$

$$
y^{\prime}=d y \mid d x
$$

$$
\begin{aligned}
& \Rightarrow \dot{x}(t)=2 c(1-\cos (t) \\
& \dot{y}(t)=2 c \dot{y} s t \\
& \Rightarrow \dot{x}^{2}+\dot{y}^{2}=4 c^{2}\left(1-w_{2} 2\right)^{2}+4 c^{2} w^{-2} 3 t=4 c^{2}-8 c^{2} \cos ^{2}\left(t+4 c^{2}-8 c^{2}(1-\cos 2 t)\right.
\end{aligned}
$$

\rightarrow persgr hime for the brochistollom

$$
\begin{aligned}
& \bar{T}_{b}=\int_{0}^{t_{2}} d t \frac{1}{\sqrt{-a y}}(-4 c) \dot{v}=\frac{-4 c}{\sqrt{-a C}} \int_{0}^{t_{2}} d t \frac{1}{\sqrt{1-\omega_{2} 2 t}} \dot{v} t \\
& =\frac{-4 c}{\sqrt{-a c}} \int_{0}^{t_{2}} d t \frac{\dot{\omega} t}{\sqrt{2} \dot{ } t}=\frac{-\sqrt{2 c}}{\sqrt{-a c}} 2 \int_{0}^{t_{2}} d t \\
& =2 \sqrt{-2 c / a} t_{2} \quad \text { vin } \quad t_{2}=\operatorname{crect} y^{\prime}
\end{aligned}
$$

e) stronglt him:

$$
\begin{array}{lll}
x(\sigma)=x_{2} 5 & \sigma_{1}=0, \sigma_{2}: 1 & \left(y_{2}<0\right) \\
y(\sigma)=y_{2} \sigma &
\end{array}
$$

\rightarrow parsge time for atraijlt dine
(1) $T_{1}=\int_{0} d t \frac{1}{\sqrt{-0 y_{i} t}} \sqrt{x_{2}^{2} y_{2}^{2}}=\sqrt{x_{2}^{2}+y_{2}^{2}} \frac{1}{\sqrt{-a y_{2}}} \int_{0} d t t^{-1 / 2}=\frac{2}{\sqrt{-0 y_{2}}} \sqrt{x_{2}^{2}+y^{2}}$

(1)
c)

$$
\begin{aligned}
& \rightarrow \quad x_{2}=c\left(2 t_{2}-\dot{2} 2 t_{L}\right)+y_{2}=c\left(1-\cos 2 t_{2}\right) \\
& \rightarrow \quad x_{2}^{2}+y_{2}^{2}=c^{2}\left(4 t_{2}^{2}-4 t_{L} h 2 t_{2}+\dot{y}^{3}\left(t_{2}+1-2 \cos 2 t_{2}+\cos ^{2} 2 t_{L}\right)\right. \\
&=c^{2}\left(2\left(1-\cos 2 t_{L}\right)+4 t_{2}^{2}-4 t_{L} \omega 2 t_{2}\right) \\
&=c^{2}\left(4 \dot{b}^{2} t_{2}+4 t_{2}^{2}-4 t_{2} \omega\left(t_{2}\right)\right.
\end{aligned}
$$

(1)

$$
p=0=2.1-4
$$

(1)

$$
\begin{aligned}
& =4 c^{2}\left(\dot{n}^{2} t_{2}+i t_{2}^{2}-t_{2} \dot{\omega} i t_{2}\right) \\
& \rightarrow \frac{T_{s}}{}=\frac{x}{\sqrt{-a c}} \frac{1}{\sqrt{1-w_{2} i t_{2}}}\left(-\pi(t) \sqrt{w^{2} t_{2}+t_{2}^{2}-t_{2} w_{i} i t_{2}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{-2 c / a} \frac{+2}{\dot{n} t_{2}} \sqrt{t_{2}^{2}+n^{2} t_{2}-t_{2} i n i t_{2}} \text { vill } t_{2} \text { from } d \text {) }
\end{aligned}
$$

f) $\underline{t_{2} \rightarrow 0}\left(\leadsto y_{2}^{\prime} \rightarrow \infty\right)$

$$
\begin{aligned}
\begin{aligned}
T_{1}\left(t_{2} \rightarrow 0\right)
\end{aligned} & =\sqrt{-2 c / c} \frac{-2}{t_{2}\left(1+0 / t_{2}^{2}\right)} \sqrt{t_{2}^{2}+t_{2}^{2}-\frac{2}{6} t_{2}^{4}-3 t_{2}^{2}+\frac{3}{6} t_{2}^{4}+0\left(t_{2}^{6}\right)} \\
& =-2 \sqrt{-2 c k} t_{2}\left[1+0\left(t_{2}^{2}\right)\right]
\end{aligned}
$$

(1)
$=T_{t}\left[1+0\left(t_{i}{ }^{2}\right)\right]$ This is thi con when the al puit P_{2} his con to the fell lime.
$\rightarrow y_{2}^{\prime} \rightarrow \infty, t_{2} \rightarrow 0$, el brehistolowom

0 el strajelt him on chuost ithtice.

$$
\underline{t_{2}=-\pi_{1}-\varepsilon} \quad\left(\sim y_{2}^{\prime} \rightarrow-\infty\right)
$$

(1) $\quad \underline{T_{s}\left(t_{2}=-\varepsilon\right)}=\sqrt{-2 c 10} \frac{2 \pi}{\varepsilon}\left[1+0\left(\varepsilon^{\prime}\right)\right]=\underline{T_{b}\left(t_{2}-\pi\right) \frac{1}{\varepsilon}\left[1+0\left(\varepsilon^{\prime}\right)\right]}$ This is the con shon P_{2} his chon to Un x-exis $\rightarrow y_{2}^{\prime} \rightarrow-\infty$, ed Un strujell-him pole is veng slow.

$p-6.2 .2$
0.2.2. $\ell 0 . j 2.4 \mathrm{ix}(t) \rightarrow A=\frac{1}{2}$ godt $[x(t) j(t)-y(t) \dot{x}(t)]$

$$
l=\phi d t \sqrt{\dot{x}^{2}(t)+j^{2}(t)}
$$

(1)

$$
\begin{align*}
& \text { l0, j2.4thm } L=\frac{1}{2}(x \dot{y}-j \dot{x})+\frac{1}{i} \lambda \sqrt{\dot{x}^{9}+y^{2}} \\
& \text { ELer: } \quad \frac{1}{2} \dot{y}=\frac{\partial L}{\partial x}=\frac{d}{d t} \frac{\partial L}{\partial \dot{x}}=-\frac{1}{2} \dot{y}+\frac{1}{i} \lambda \frac{\dot{x}}{d t} \frac{\dot{\dot{x}^{2}+j^{2}}}{\sqrt{2}} \\
& \rightarrow \quad y-y_{0}=\lambda \frac{\dot{x}}{\sqrt{x^{\prime}+y^{2}}} \tag{1}\\
& -\frac{1}{i} \dot{x}=\frac{\partial L}{\partial y}=\frac{\partial}{d t} \frac{\partial}{\partial j}=\frac{1}{i} \dot{x}+\frac{1}{i} \lambda \frac{d}{d t} \frac{j}{\sqrt{\dot{x}^{2}+j^{2}}} \\
& \rightarrow x-x_{0}=-\lambda \frac{\dot{y}}{\sqrt{x^{2}+y^{2}}} \tag{2}
\end{align*}
$$

(1)
$\Rightarrow\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=\lambda^{2} \quad$ virch vill unter $\left(x_{0, j},\right)$,
(1) rohis λ
Now $\overline{O P}=d=2 \lambda \dot{\mu} \alpha$
O
el $l=2 \lambda \alpha$
$\rightarrow \frac{d}{2 \lambda}=i \frac{\ell}{2 \lambda}$ - deferinimes λ
(1)

Mrpine $\int:=1 / 2 \lambda$

$$
\rightarrow \quad \dot{\sim} S=\frac{d}{l} S
$$

(1)

Grephic whethie as

$1^{\text {st }}$ con : $d \geqslant l$ no soletio
$d \leq l$ execty one whtio, wle obvions is a vorim

$$
p-0.2 .3 .
$$

0.2.].) Wites a poh i $\mathbb{R}_{3}: \vec{x}(t)=\left(x_{9}(t), x_{2}(t), x_{3}(t)\right)$ long of cund $\quad \ell=\int_{t_{-}}^{t_{t}} d t \sqrt{\left.\dot{x}_{1} t\right)+\dot{x}_{2}^{2}\left(t-+\dot{x}_{3}^{(t)}\right.}$
(1)

$$
=: \int_{t_{-}}^{t_{+}} d t L_{1}(\dot{x})
$$

ITandey whiliv: $x_{1}^{\prime}(t)+x_{2}^{\prime}(t)+x_{j}^{2}(t)=1 \quad(t)$
ar $0=\int_{t_{-}}^{t_{+}} d t\left(x_{\underline{I}}^{2}(t)+x_{2}^{2}(t)+x_{j}(t)-I\right)$
0
(1)

$$
=: \int_{t_{-}}^{t_{+}} d t L_{2}(\vec{x})
$$

\rightarrow lunits $L=L_{1}-\lambda L_{L}$

$$
\begin{gathered}
\left((\vec{x}, \dot{\vec{x}})=\sqrt{\dot{x}_{1}^{2}+\dot{x}_{2}^{2}+\dot{x}_{j}^{2}}-\lambda\left(x_{1}^{2}+x_{2}^{1}+x_{j}^{2}-I\right)\right. \\
c-\text { whr }-\log { }^{r e n g} \rightarrow \frac{d}{d t} \frac{\partial L}{\partial \dot{x}_{i}}-\frac{\partial L}{\partial x_{i}} \\
\frac{\frac{\dot{x}_{i}}{\sqrt{\dot{x}_{1}^{\prime}+\dot{x}_{l}^{2}+x_{j}^{2}}}}{}=-2 \lambda x_{i} \quad(\gamma)
\end{gathered}
$$

Now wnich $\vec{l}:=\vec{x} \times \vec{p}$ vill $\vec{p}=\frac{\partial}{\partial \dot{\vec{x}}}=\frac{\overrightarrow{\vec{x}}}{|\overrightarrow{\vec{x}}|}$

$$
\leadsto \vec{p} \| \dot{\vec{x}} \text {, or } \vec{p} \times \dot{\vec{x}}=0
$$

Furthur, (1) $\rightarrow \dot{\vec{p}}=-2 \lambda \vec{x} \sim 2 \quad \dot{\vec{p}} \times \overrightarrow{\vec{x}}=0$
(1) $\rightarrow l=x \times \vec{p}+\vec{x} \times \vec{p}=0 \rightarrow \vec{l}-$ whst
(t女
el $\vec{l} \cdot \vec{x}=\vec{x} \cdot(\vec{x} \times \vec{p})=0 \rightarrow l_{1} x_{1}+l_{2} x_{2}+l_{3} x_{3}=0$ vile lss ws

