
PHYS 622 Classical Electrodynamics W 2023

Problem Assignment # 2 01/19/2023
due 01/26/2023

0.2.4. Functional derivative

Let F [ϕ] be a functional of a real-valued function ϕ(x). For simplicity, let x ∈ R; the generalization to more
than one dimension is straightforward. We can (sloppily) define the functional derivative of F as

δF

δϕ(x)
:= lim

ε→0

1

ε

(
F [ϕ(y) + εδ(y − x)]− F [ϕ(y)]

)
a) Calculate δF/δϕ(x) for the following functionals:

i) F =
∫
dxϕ(x)

ii) F =
∫
dxϕ2(x)

iii) F =
∫
dx f(ϕ(x)) g(ϕ(x)) where f and g are given functions

iv) F =
∫
dx (ϕ′(x))2 where ϕ′(x) = dϕ/dx

hint: Integrate by parts and assume that the boundary terms vanish.

v) F =
∫
dxV (ϕ′(x)) where V is some given function.

remark: Blindly ignore terms that formally vanish as ε→ 0 unless you want to find out why the above
definition is very problematic. It does work for operational purposes, though.

b) Consider a Lagrangian density’ L(ϕ(x), ∂µϕ(x)) and an action’ S =
∫
d4xL. Show that extremizing

S by requiring δS/δϕ(x) ≡ 0 with the above definition of the functional derivative leads to the Euler-
Lagrange equations

∂µ
∂L

∂(∂µϕ)
=
∂L
∂ϕ

(3 points)

0.2.5. Massive scalar field

Consider the Lagrangian density for a massive scalar field from the example in ch. 0 §2.5.

a) Generalize this Lagrangian density to a complex field φ(x) ∈ C:

L =
1

2
(∂µφ(x)) (∂µφ∗(x))− m2

2
|φ(x)|2

with φ∗ the complex conjugate of φ. What are the Euler-Lagrange equations now?

b) Consider a local gauge transformation, φ(x) → φ(x) eiΛ(x), with Λ(x) a real field that characterizes the
transformation. Is the Lagrangian from part b) invariant under such a transformation?

(2 points)

. . . /over



0.2.6. Particle in homogeneous E and B fields

Consider a point particle (mass m, charge e) in homogeneous fields B = (0, 0, B) and E = (0, Ey, Ez). Treat
the motion of the particle nonrelativistically.

a) Show that the motion in z-direction decouples from the motion in the x-y plane, and find z(t).

b) Consider ξ := x+ iy. Find the equation of motion for ξ, and its most general solution.

hint: Define the cyclotron frequency ω = eB/mc, and remember how to solve inhomogeneous ODEs.

c) Show that the time-averaged velocity perpendicular to the plane defined by B and E is given by the
drift velocity

〈v〉 = cE ×B/B2

Show that Ey/B � 1 is necessary and sufficient for the non relativistic approximation to be valid.

d) Show that the path projected onto the x-y plane can have three qualitatively different shapes, and plot
a representative example for each.

(6 points)

0.2.7. Harmonic oscillator coupled to a magnetic field

Consider a charged 3-d classical harmonic oscillator (oscillator frequency ω0, charge e). Put the oscillator
in a homogeneous time-independent magnetic field B = (0, 0, B). Show that the motion remains oscillatory,
and find the oscillation frequencies in the directions parallel and perpendicular, respectively, to B.

(4 points)
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Solution

a) i) δF
δϕ(x) = limε→0

1
ε

∫
dy [ϕ(y) + εδ(y − x)− ϕ(y)] =

∫
dy δ(y − x) = 1

ii) δF
δϕ(x) = limε→0

1
ε

∫
dy
[
(ϕ(y) + εδ(y − x))

2 − ϕ(y)2
]

= limε→0
1
ε

∫
dy
[
2εϕ(y)δ(y − x) +O(ε2)

]
= 2ϕ(x)

iii) δF
δϕ(x) = limε→0

1
ε

∫
dy [f (ϕ(y) + εδ(y − x))] [g (ϕ(y) + εδ(y − x))]

= f ′(ϕ(x))g(ϕ(x)) + f(ϕ(x))g′(ϕ(x)) 1pt

iv) δF
δϕ(x) = limε→0

1
ε

∫
dy

[(
ϕ′(y) + ε ddy δ(y − x)

)2
− (ϕ′(y))

2

]
= 2

∫
dy ϕ′(y) ddy δ(y − x) = −2ϕ′′(x)

v) δF
δϕ(x) = limε→0

1
ε

∫
dy
[
V
(
ϕ′(y) + ε ddy δ(y − x)

)
− V (ϕ′(y))

]
= limε→0

1
ε

∫
dy
[
εV ′(ϕ′(y)) ddy δ(y − x) +O(ε2)

]
= −V ′′(ϕ′(x))ϕ′′(x) 1pt

b) 0 = δ
δϕ(x)

∫
d4yL (ϕ(y), ∂µϕ(y))

= limε→0
1
ε

∫
d4y [L (ϕ(y) + εδ(y − x), ∂µϕ(y) + ε∂µδ(y − x))− L (ϕ(y), ∂µϕ(y))]

= limε→0
1
ε

∫
d4y

[
εδ(y − x) ∂L

∂ϕ(y) + ε (∂µδ(y − x)) ∂L
∂(∂µϕ(y))

+O(ε2)
]

= ∂L
∂ϕ(x) − ∂µ

∂L
∂(∂µϕ(x))

1pt

1
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