Problem Assignment # 2 01/19/2023due 01/26/2023

0.2.4. Functional derivative

Let $F[\varphi]$ be a functional of a real-valued function $\varphi(x)$. For simplicity, let $x \in \mathbb{R}$; the generalization to more than one dimension is straightforward. We can (sloppily) define the *functional derivative* of F as

$$\frac{\delta F}{\delta \varphi(x)} := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(F[\varphi(y) + \epsilon \delta(y - x)] - F[\varphi(y)] \right)$$

- a) Calculate $\delta F/\delta \varphi(x)$ for the following functionals:
 - i) $F = \int dx \varphi(x)$
 - ii) $F = \int dx \varphi^2(x)$
 - iii) $F = \int dx f(\varphi(x)) g(\varphi(x))$ where f and g are given functions
 - iv) $F = \int dx \, (\varphi'(x))^2$ where $\varphi'(x) = d\varphi/dx$

hint: Integrate by parts and assume that the boundary terms vanish.

v) $F = \int dx V(\varphi'(x))$ where V is some given function.

remark: Blindly ignore terms that formally vanish as $\epsilon \to 0$ unless you want to find out why the above definition is very problematic. It does work for operational purposes, though.

b) Consider a Lagrangian density' $\mathcal{L}(\varphi(x), \partial_{\mu}\varphi(x))$ and an action' $S = \int d^4x \mathcal{L}$. Show that extremizing S by requiring $\delta S/\delta\varphi(x) \equiv 0$ with the above definition of the functional derivative leads to the Euler-Lagrange equations

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi)} = \frac{\partial \mathcal{L}}{\partial\varphi}$$
(3 points)

0.2.5. Massive scalar field

Consider the Lagrangian density for a massive scalar field from the example in ch. 0 §2.5.

a) Generalize this Lagrangian density to a complex field $\phi(x) \in \mathbb{C}$:

$$\mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \phi(x) \right) \left(\partial^{\mu} \phi^{*}(x) \right) - \frac{m^{2}}{2} \left| \phi(x) \right|^{2}$$

with ϕ^* the complex conjugate of ϕ . What are the Euler-Lagrange equations now?

b) Consider a local gauge transformation, $\phi(x) \to \phi(x) e^{i\Lambda(x)}$, with $\Lambda(x)$ a real field that characterizes the transformation. Is the Lagrangian from part b) invariant under such a transformation?

(2 points)

... /over

0.2.6. Particle in homogeneous E and B fields

Consider a point particle (mass m, charge e) in homogeneous fields B = (0, 0, B) and $E = (0, E_y, E_z)$. Treat the motion of the particle nonrelativistically.

- a) Show that the motion in z-direction decouples from the motion in the x-y plane, and find z(t).
- b) Consider $\xi := x + iy$. Find the equation of motion for ξ , and its most general solution.

hint: Define the cyclotron frequency $\omega = eB/mc$, and remember how to solve inhomogeneous ODEs.

c) Show that the time-averaged velocity perpendicular to the plane defined by B and E is given by the *drift velocity*

$$\langle \boldsymbol{v}
angle = c \, \boldsymbol{E} imes \boldsymbol{B} / \boldsymbol{B}^2$$

Show that $E_y/B \ll 1$ is necessary and sufficient for the non relativistic approximation to be valid.

d) Show that the path projected onto the x-y plane can have three qualitatively different shapes, and plot a representative example for each.

(6 points)

0.2.7. Harmonic oscillator coupled to a magnetic field

Consider a charged 3-d classical harmonic oscillator (oscillator frequency ω_0 , charge e). Put the oscillator in a homogeneous time-independent magnetic field $\mathbf{B} = (0, 0, B)$. Show that the motion remains oscillatory, and find the oscillation frequencies in the directions parallel and perpendicular, respectively, to \mathbf{B} .

(4 points)

0.2.4. Functional derivative

Let $F[\varphi]$ be a functional of a real-valued function $\varphi(x)$. For simplicity, let $x \in \mathbb{R}$; the generalization to more than one dimension is straightforward. We can (sloppily) define the *functional derivative* of F as

$$\frac{\delta F}{\delta \varphi(x)} := \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(F[\varphi(y) + \epsilon \delta(y - x)] - F[\varphi(y)] \right)$$

- a) Calculate $\delta F/\delta \varphi(x)$ for the following functionals:
 - i) $F = \int dx \varphi(x)$
 - ii) $F = \int dx \, \varphi^2(x)$
 - iii) $F = \int dx f(\varphi(x)) g(\varphi(x))$ where f and g are given functions
 - iv) $F = \int dx \, (\varphi'(x))^2$ where $\varphi'(x) = d\varphi/dx$ hint: Integrate by parts and assume that the boundary terms vanish.
 - v) $F = \int dx V(\varphi'(x))$ where V is some given function.

remark: Blindly ignore terms that formally vanish as $\epsilon \to 0$ unless you want to find out why the above definition is very problematic. It does work for operational purposes, though.

b) Consider a Lagrangian density' $\mathcal{L}(\varphi(x), \partial_{\mu}\varphi(x))$ and an action' $S = \int d^4x \mathcal{L}$. Show that extremizing S by requiring $\delta S/\delta\varphi(x) \equiv 0$ with the above definition of the functional derivative leads to the Euler-Lagrange equations

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\varphi)} = \frac{\partial \mathcal{L}}{\partial\varphi}$$
(3 points)

Solution

a) i)
$$\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dy \left[\varphi(y) + \epsilon \delta(y - x) - \varphi(y) \right] = \int dy \, \delta(y - x) = 1$$

ii)
$$\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dy \left[(\varphi(y) + \epsilon \delta(y - x))^2 - \varphi(y)^2 \right] = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dy \left[2\epsilon \varphi(y) \delta(y - x) + O(\epsilon^2) \right]$$

$$= 2\varphi(x)$$

iii)
$$\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dy \left[f(\varphi(y) + \epsilon \delta(y - x)) \right] \left[g(\varphi(y) + \epsilon \delta(y - x)) \right]$$

$$= f'(\varphi(x)) g(\varphi(x)) + f(\varphi(x)) g'(\varphi(x))$$

1pt
iv)
$$\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dy \left[\left(\varphi'(y) + \epsilon \frac{d}{dy} \, \delta(y - x) \right)^2 - \left(\varphi'(y) \right)^2 \right] = 2 \int dy \, \varphi'(y) \frac{d}{dy} \, \delta(y - x) = -2\varphi''(x)$$

v)
$$\frac{\delta F}{\delta \varphi(x)} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dy \left[V \left(\varphi'(y) + \epsilon \frac{d}{dy} \, \delta(y - x) \right) - V(\varphi'(y)) \right]$$

$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int dy \left[\epsilon V'(\varphi'(y)) \frac{d}{dy} \, \delta(y - x) + O(\epsilon^2) \right] = -V''(\varphi'(x)) \varphi''(x)$$

1pt

b)
$$\begin{aligned} 0 &= \frac{\delta}{\delta\varphi(x)} \int d^4y \, \mathcal{L}\left(\varphi(y), \partial_\mu\varphi(y)\right) \\ &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int d^4y \left[\mathcal{L}\left(\varphi(y) + \epsilon\delta(y-x), \partial_\mu\varphi(y) + \epsilon\partial_\mu\delta(y-x)\right) - \mathcal{L}\left(\varphi(y), \partial_\mu\varphi(y)\right) \right] \\ &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int d^4y \left[\epsilon\delta(y-x) \frac{\partial\mathcal{L}}{\partial\varphi(y)} + \epsilon \left(\partial_\mu\delta(y-x)\right) \frac{\partial\mathcal{L}}{\partial(\partial_\mu\varphi(y))} + O(\epsilon^2) \right] \\ &= \frac{\partial\mathcal{L}}{\partial\varphi(x)} - \partial_\mu \frac{\partial\mathcal{L}}{\partial(\partial_\mu\varphi(x))} \end{aligned}$$
 1pt

$$p^{-2\lambda \cdot \xi}$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5)$$

$$(3, 5$$

p-0.2.6-1

$$(0.2.6.) \quad (0) \quad Eq. of motion : m \vec{v} = e \vec{E} + \frac{e}{c} \vec{v} \times \vec{I}$$

$$(k + \vec{I} = (0,0,\vec{I}) \quad e \vec{L} \quad \vec{E} = (0, E_{j}, E_{j})$$

$$(1)$$

$$(1)$$

$$m \vec{y} = e \vec{E}_{j} - \frac{e}{c} \times \vec{I}$$

$$(1)$$

$$m \vec{z} = e \vec{E}_{j} - \frac{e}{c} \times \vec{I}$$

$$(1)$$

$$(J) \rightarrow t(t) = t_0 + v_t^0 t + \frac{eE_t}{2m} t^1$$

b) here
$$\int = x + iy$$

 $(1) + i \cdot (2) \rightarrow m \int = icE_y - i\frac{eT}{C}j$
here $W := \frac{cT}{mc}$ up do the frequency
 $\rightarrow \int f + iwf - i\frac{eF_y}{mc} (x)$
Spuid while of iclomognity e_y , $f = \frac{eE_y}{c}$

÷

0

0

 \bigcirc

p-0.2.6-2

() from
$$x(t=0) = 0 = y(t=0)$$
 we have:
 $(t=0) = 0 = y(t=0)$ we have:
 $x(t) = \frac{b}{\omega} w + \frac{cE_1}{2}t$
 $y(t) = \frac{b}{\omega} (w + 1)$

ų,

4

0

0

12

1

н Рада 112

0.2. Sign the eddiller to the restrict form
$$-mus^{2}x$$
, the portion is
 $\frac{e}{b}\vec{v}\vec{x}\vec{z} = \frac{e}{b}\left(\frac{e}{b}\vec{z}, -\dot{x}\vec{d}, 0\right)$
 $\rightarrow \ln top of motion en
 $\left[\frac{\ddot{x}+u_{0}^{2}x=R\dot{z}}{\ddot{y}+u_{0}^{2}x=R\dot{z}}\right]^{(1)}$
 $\left[\frac{\ddot{y}+u_{0}^{2}\dot{y}=-R\dot{x}}{\ddot{z}+u_{0}^{2}\dot{z}=0}\right]^{(1)}$
(1)
 $\vec{y}+u_{0}^{2}\dot{y}=-R\dot{x}$
(1)
 $\vec{y}+u_{0}^{2}\dot{y}=-R\dot{x}$
(1)
 $\vec{y}+u_{0}^{2}\dot{y}=-R\dot{z}$
(1)
 $\vec{y}+u_{0}^{2}\dot{z}=0$
(1)
 $\vec{y}+u_{0}^{2}\dot{z}=0$
(1)
 $\vec{y}+u_{0}^{2}\dot{z}=0$
(1)
 $\vec{y}+u_{0}^{2}\dot{z}=0$
(1)
 $\vec{y}+u_{0}^{2}\dot{z}=-iR\dot{z}$
(1)
 $\vec{y}+u_{0}^{2}\dot{z}=-iR\dot{z}$
(1)
 $\vec{y}+u_{0}\dot{z}=-iR\dot{z}$
(1)
 $\vec{y}+u_{0}\dot{z}=-iR\dot{z}$
 $\vec{y}+u_{0}\dot{z}=-iR\dot{z}$
(1)
 $\vec{y}+u_{0}\dot{z}=-iR\dot{z}$
 $\vec{y}+u_{0}\dot{z}=-iR\dot{z}$
 $\vec{y}+u_{0}\dot{z}=-iR\dot{z}$
 $\vec{y}-u\dot{z}+w_{0}\dot{z}=\omega R$
 $\vec{y}-u\dot{z}+w_{0}\dot{z}=\omega R$
 $\vec{y}-u\dot{z}+w_{0}\dot{z}=0$
 $\vec{y}-w_{0}\dot{z}+iQ$
 $\vec{y}-much \dot{z}$ the $x-y$ plan is variable by , id
 $\vec{y}-propositions$ en
 $\vec{y}=[u_{0}\dot{z}+R^{2}/t_{0}\dot{z}+R^{2}/t_{0}\dot{z}+R^{2}/t_{0}\dot{z}]$$