2.2.1. Planar charge distributions

a) Consider a homogeneously charged infinitesimally thin ring with radius R and total charge Q that is oriented perpendicular to the z-axis. Calculate the electric field on the z-axis.
b) The same for a homogeneously charged disk with charge density σ and radius R. Consider the limits $z \rightarrow \infty, z \rightarrow 0$, and $R \rightarrow \infty$, and ascertain that they makes sense.

(4 points)

2.2.2. Spherically symmetric charge distributions

Consider a spherically symmetric static charge distribution (in spherical coordinates): $\rho(\boldsymbol{x})=\rho(r)$.
a) Express the electric field in terms of a one-dimensional integral over $\rho(r)$, and the electrostatic potential by a one-dimensional integral over the field.
hint: Make an ansatz for a purely radial field, $\boldsymbol{E}(\boldsymbol{x})=E(r) \hat{e}_{r}$, and integrate Gauss's law over a spherical volume.

Explicitly calculate and plot the field $\boldsymbol{E}(\boldsymbol{x})$ and the potential $\varphi(\boldsymbol{x})$ for
b) a homogeneously charged sphere

$$
\rho(\boldsymbol{x})= \begin{cases}\rho_{0} & \text { if } r \leq r_{0} \\ 0 & \text { if } r>r_{0}\end{cases}
$$

c) a homogeneously charged spherical shell

$$
\rho(\boldsymbol{x})=\sigma_{0} \delta\left(r-r_{0}\right)
$$

2.2.4. Helmholtz equation

Find the most general Fourier transformable solution of the Helmholtz equation

$$
\left(\kappa^{2}-\boldsymbol{\nabla}^{2}\right) \varphi(\boldsymbol{x})=4 \pi \rho(\boldsymbol{x})
$$

in terms of an integral.
hint: The answer is a generalization of Poisson's formula.

2.3.1. Quadrupole moments

a) Consider a localized charge density as in ch. $2 \S 3.1$ and carry the expansion of the potential to $O\left(1 / r^{3}\right)$. Show that the potential to that order is given by

$$
\varphi(\boldsymbol{x})=\frac{1}{r} Q+\frac{1}{r^{3}} \boldsymbol{x} \cdot \boldsymbol{d}+\frac{1}{r^{5}} \sum_{i, j} x_{i} x_{j} Q_{i j}+\ldots
$$

with Q the total charge and \boldsymbol{d} the dipole moment, and determine the quadrupole tensor $Q_{i j}$.
b) Show that the quadrupole tensor is independent of the choice of the origin provided the total charge and the dipole moment vanish.
c) Consider a homogeneously charged ellipsoid $(x / a)^{2}+(y / b)^{2}+(z / c)^{2} \leq 1$ and calculate the quadrupole tensor $Q_{i j}$ with respect to the ellipsoid's center. Check to make sure that the result for $Q_{i j}$ is traceless.
d) Let the charge density be invariant under rotations about the z-axis through multiples of an angle α, with $|\alpha|<\pi$. Show that in this case the quadrupole tensor has the form $\left(\begin{array}{ccc}q & 0 & 0 \\ 0 & q & 0 \\ 0 & 0 & -2 q\end{array}\right)$. Make sure your result from part c) conforms with this for the special case $a=b$.
e) Consider the homogeneously charged ellipsoid from part c) and calculate the quadrupole moments $Q_{2 m}$ as defined in ch. $2 \S 3.5$.
2.2.1 c) betllungbrille $z=0$ plome.

$$
\rho(J)=\rho_{0} \delta\left(y_{t}\right) \delta(r-R)
$$

~ yhider coordinates.
Totel lorp : $\int d \vec{j} \rho(\vec{j})=i_{5} \rho_{0}=Q$
Poisn's forme $\quad \varphi(\bar{x})=\int d \vec{s} \frac{\rho(\vec{y})}{|\vec{x}-\vec{y}|}$
unctric filel: $\quad \vec{E}=-\vec{\nabla} \varphi=-\int d \vec{y} \rho(\vec{y}) \vec{D} \frac{1}{|\vec{x}-\vec{j}|}=\int \operatorname{ld} s(\vec{y}) \frac{\vec{x}-\vec{y}}{|\vec{x}-\vec{y}|^{3 / 2}}$
iymary $\rightarrow \vec{E}(\vec{x}=(0,0, z))=E(z) \hat{z}$
(1)

$$
\leadsto \underline{\underline{E(z)}}=z \int d \vec{y} \frac{\rho(\vec{y})}{|\vec{x}-\vec{j}|^{3 / 2}}=z \int_{0}^{i \sigma} d \varphi \frac{\rho_{0}}{\left(z^{2}+R^{2}\right)^{3 / 2}}=\frac{Q z}{\left(z^{2}+R^{2}\right)^{3 / 2}}
$$

b) Uerry doing: T
\rightarrow Uleg an $\mathrm{nij}^{\mathrm{j}}$ villerehics r, Unikness dr:

$$
d Q=F i \bar{\sigma} r d r=\frac{Q}{\pi R^{2}}\left\langle\sigma^{r} r d r=\frac{2 Q}{R^{2}} r d r \quad Q=5 R^{2} \sigma\right.
$$

$$
\text { c) } \sim \underline{E(z)}=\int_{0}^{R} d r \frac{\beta \alpha}{R^{2}} r \frac{\psi}{\left(z^{2}+r^{2}\right)^{2 / 2}}=\frac{2 Q}{R^{2}} z \frac{1}{2} \int_{0}^{R^{2}} \frac{d x}{\left(x^{7}+x^{1 / 2}\right.}
$$

(1)

$$
=-\left.\frac{2(\alpha)}{R^{2}} \frac{1}{(1+x)^{1 / 2}}\right|_{0} ^{R^{2} / t^{2}}-\frac{2 Q}{R^{2}}\left(1-\frac{z}{\sqrt{R^{2}+z^{2}}}\right)=255\left(1-\frac{t}{\sqrt{R^{2}+t^{2}}}\right)
$$

$$
E(t \rightarrow \infty)=\frac{2(x}{R^{2}}\left(1-x+\frac{1}{2} \frac{R^{2}}{t^{2}}+O\left(R^{2}\left(t^{2}\right)\right)=Q 1 t^{2}+O\left(z^{-b}\right)\right. \text { fuiel of pait loys }
$$

$$
E(t \rightarrow 0)=E(R \rightarrow \infty)=255
$$

In rifimic shact vill wated ley dois prochom a fuide Kul's imperent of z !

$$
\vec{\nabla} \cdot \vec{E}=45 \rho
$$

ed ihgrah our a sphm vile volen V :

$$
\int_{v} d \vec{x} \vec{\nabla} \cdot \vec{E}=\int_{(v)} d \vec{s} \cdot \vec{E}=45 \int_{v} d \vec{x} \rho
$$

let $g(\bar{x})$ be sphericty tyumelic, $g(\bar{x})=g(r)$, ed ack a wactr: $\mid \overrightarrow{\vec{E}}(\vec{x})=E\left(r\left|\hat{e}_{r}\right| \quad \hat{e}_{r}=\vec{x}| | \vec{x} \mid\right.$

$$
\begin{aligned}
& 4 \sigma r^{2} E\left(n=4 \pi \cdot 4 \pi \int_{0}^{r} d r^{\prime} r^{\prime 2} g\left(r^{\prime}\right)\right. \\
& \left.E(r)=\frac{45}{r^{2}} \int d r^{\prime} r^{\prime 2} g\left(r^{\prime}\right) \right\rvert\,
\end{aligned}
$$

tor the poltitil, wisids $\vec{E}(\bar{x})=-\stackrel{\rightharpoonup}{\nabla} \varphi(\bar{x})$
sphaiciel yamer $\sim \vec{\nabla} \varphi=\partial_{r} \varphi \hat{r}$

$$
\begin{aligned}
& \rightarrow \quad E(r)=-\partial_{r} \varphi(r) \\
& \rightarrow \quad \varphi(r)=-\int_{\infty}^{\infty} d r^{\prime} E\left(r^{\prime}\right) \quad \text { if virn loon } \varphi(r=\infty)=0 \\
& \rightarrow \quad \varphi(r)=\int_{r}^{\infty} d r^{\prime} E\left(r^{\prime}\right)
\end{aligned}
$$

b) $\quad E(r)=\frac{45}{r^{2}} \int_{0}^{r} d r^{\prime} r^{\prime 2} \rho_{0} \theta\left(r^{\prime}<r_{0}\right)$

14ten: rero $\underline{\underline{E(r)}}=\frac{45 \rho 0}{r^{2}} \int_{0}^{r} d x x^{2}=\frac{45 \rho_{0}}{r^{2}} \frac{1}{2} r^{3}=\frac{45}{3} \rho_{0} r$

$$
=\frac{4 \pi}{j} r_{0}^{2} \rho_{0} \frac{r}{r_{0}^{2}}=\frac{Q r}{r_{0}^{2}}
$$

$$
Q=\frac{4 \pi}{5} r_{0}^{3} \rho_{0}
$$

$$
=\text { totel }
$$ lorg

p 2.2.2-2

$$
\begin{aligned}
& 2^{2 d} \text { cen } \quad r>r_{0} \quad E(r)=\frac{45}{r^{2}} \int_{0}^{r_{0}} d r^{\prime} r^{\prime 2} \rho_{0}=\frac{45}{r^{2}} \rho 0 \frac{1}{3} r_{0}{ }^{2}=Q / r^{2} \\
& \rightarrow \left\lvert\, \begin{array}{ll}
E(r)= \begin{cases}Q r / r_{0}^{3} & \text { for } r \leq r_{0} \\
Q / r^{2} & \text { for } r>r_{0}\end{cases} \\
\vec{E}(\bar{x})=E(r) \hat{e}_{r}
\end{array}\right. \\
& \text { Q } / r_{0}^{2}=\frac{\alpha / 1 r^{2}}{r_{0}}
\end{aligned}
$$

Nov the pohtile:

$$
\begin{aligned}
& \text { 1rtcen: } \underline{r<r_{0}} \quad \underline{\varphi}(r)=\int_{r}^{r_{0}} d r^{\prime} \frac{Q r^{\prime}}{r_{0}^{2}}+\int_{r_{0}}^{\infty} d r^{\prime} \frac{Q}{r^{2}}=\frac{Q}{r_{0}^{3}} \frac{1}{2}\left(r_{0}^{2}-r^{2}\right)+\frac{Q}{r_{0}} \\
& =\frac{\frac{Q}{2 r_{0}{ }^{2}}\left(3 r_{0}{ }^{2}-r^{2}\right)}{\infty} \\
& \text { (1) } \underline{\underline{2^{2 l} c e m}: \underline{r>r_{0}} \quad \underline{\varphi(r)}=\int_{r}^{\infty} d r^{\prime} \frac{Q}{r^{\prime \prime}}=\underline{\underline{Q}} \underline{r}} \\
& \varphi(r)= \begin{cases}\frac{Q}{2 r_{0}^{3}}\left(J r_{0}^{2}-r^{2}\right) & \text { for } r<r_{0} \\
Q / r & \text { for } r \geq r_{0}\end{cases}
\end{aligned}
$$

c) elictris fuide $r<r_{0} \quad E(r)=0$

$$
r>r_{0} \quad E(r)=\frac{4 \pi}{r^{2}} \sigma_{0} r_{0}^{2}=\frac{Q}{r^{2}}
$$

$$
E(r)=\left\{\begin{array}{cc}
0 & \text { for } r<r_{0} \\
Q / r^{2} & \text { for } r>r_{0}
\end{array}\right.
$$

$$
\text { vile } Q=45 r_{0}{ }^{2} \sigma_{0}=\text { totel legr }
$$

(1) Mir r>ro, E(r) is Un sam as for Un Liono praves spheen!

$$
\begin{aligned}
& \text { p 2.2.2-3 } \\
& \text { polutil: } r<r_{0} \underline{\underline{\varphi}(r)}=\int_{r_{0}}^{\infty} d r^{\prime} \frac{Q}{r^{\prime 2}}=\underline{\underline{Q} r_{0}} \\
& \square-2 \\
& r>r_{0} \quad \varphi(r)=\int_{r}^{\infty} d r^{\prime} \frac{Q}{r^{\prime 2}}=\underline{Q} \\
& \varphi(r)= \begin{cases}Q \mid r_{0} & \text { for } \\
\text { rero } \\
Q / r & \text { for } r>r_{0}\end{cases} \\
& \text { Q|r, } \underbrace{\text { (r) }}_{r o l}
\end{aligned}
$$

1 (1)
p-2.2.4
2.2.4:) Ueluholt 1 : : $\quad\left(\vec{r}^{2}-\vec{\nabla}^{2}\right) \varphi(\vec{x})=4 g g(\vec{x})$

Tommir Gefo as i ll ${ }^{2} 2$
(1)

$$
\begin{aligned}
& \left(\vec{r}^{2}+\vec{r}^{2}\right) \hat{\varphi}(\vec{l})=45 \hat{\rho}(\vec{l}) \\
\Rightarrow & \hat{\varphi}(\vec{r})=\frac{45}{n^{2}+\vec{l}^{2}} \hat{j}(\vec{l}) \\
\Rightarrow & \varphi(\vec{x})=\int \frac{d \vec{l}}{(\pi)^{2}} e^{i \vec{l} \vec{x}} \frac{4 \pi}{1 r^{2}+\vec{r}^{2}} \hat{\jmath}(\vec{l})
\end{aligned}
$$

$=\int \alpha \vec{y} v_{s c}(\vec{x}-\vec{y}) f(\vec{y}) \quad$ by Un wovkencia thene, P4Y」 16 U2 \$ 7.1
(1)
when $v_{\text {sc }}(\bar{x})$ is the tionnir boch brefo of the seraned condurs poluciel

$$
\hat{v}_{s e}(\bar{l})=\frac{45}{12^{1}+\bar{l}^{2}}
$$

0
610 Probeh $27 b) \rightarrow \quad v_{x c}\left(\vec{x} \left\lvert\,=\frac{1}{r} e^{-12 r}\right.\right.$ vile $r=|\vec{x}|$

$$
\rightarrow \quad \varphi(\vec{x})=\int d y \frac{e^{-|2| \vec{x}-\vec{y} \mid}}{|\vec{x}-\vec{y}|} f(\vec{y})
$$

tor $12=0$ ve recurs Prijsce's formele

$$
\begin{aligned}
& 4 \quad p-2 \text { 小.I-1 } \\
& \therefore \quad \text { 2.3.1. of } \frac{1}{|\vec{x}-\vec{j}|}=\frac{1}{r}\left(1-2 \frac{\vec{x} \cdot \vec{y}}{r^{2}}+\frac{y^{2}}{r^{2}}\right)^{-112}=\frac{1}{r}\left(1+\frac{\vec{x} \cdot \vec{j}}{r^{2}}-\frac{1}{2} \frac{y^{2}}{r^{2}}+\frac{3}{2} \frac{(\vec{x} \cdot \vec{j})^{2}}{r^{4}}+\ldots\right) \\
& =\frac{1}{r}\left[1+\frac{\vec{x} \cdot \vec{j}}{r^{2}}+\frac{3}{2} x_{i} x_{j} y_{i j} j \frac{1}{r^{4}}-\frac{1}{2} j^{2} \delta_{i j} x_{i} x_{j} \frac{1}{r^{4}}+\cdots\right] \\
& =\frac{1}{r}\left[1+\frac{\frac{\vec{x}}{} \cdot j}{r^{2}}+\frac{1}{2} x_{i} x_{j}\left(y_{j} j_{j}-\delta_{i j} j^{2}\right) \frac{1}{r^{4}}+\cdots\right] \\
& \rightarrow \underline{\underline{\varphi(\vec{x}})}=\int d \vec{y} \frac{\rho(\vec{y})}{|\vec{x}-\vec{y}|}=\frac{1}{r} \int d \vec{y} f(\vec{y})+\frac{1}{r^{2}} \vec{x} \cdot \int d \vec{y} \vec{J} f(\vec{y}) \\
& +\frac{1}{2} \frac{1}{y^{5}} x_{i} x_{j} \int d j\left(1 y_{i j}-\delta_{i j} j^{2}\right) g(y)+\cdots \\
& =\frac{1}{r} Q+\frac{1}{r^{2}} \vec{x} \cdot \vec{d}+\frac{1}{r^{5}} \sum_{i, j} x_{i} x_{j} Q_{i j}+O\left(1 / r^{4}\right)
\end{aligned}
$$

Whe $Q=\int d J J(J)$ mowopole mont
$\vec{d}=\int d \vec{y} \vec{j}(\vec{y})$ dipule mont
01 $Q_{i j}=\frac{1}{i} \int d j^{-1}\left(2 y_{i j}-\delta_{i j} j^{2}\right) s(5)$ giodnpole mont
b)

$$
\begin{aligned}
& f^{\prime}(\vec{j})=s(\vec{y}-\bar{a}) \\
& \left.\leadsto Q_{i j}^{\prime}=\frac{1}{2} \int_{d j}\left(J_{j i} j_{j}-\delta_{i j}\right)^{2}\right) g^{\prime}(\zeta) \\
& =\frac{1}{2} \int d \vec{j}\left[J\left(y_{i}+c_{i}\right)\left(y_{j}+0_{j}\right)-\delta_{i j}(\vec{y}+\vec{a})^{l}\right] f(\vec{y}) \\
& \left.-Q_{i j}+\frac{1}{i} \int d j\left[J a_{i} j_{j}+\right] a_{j} j_{i}+\lambda a_{i j}-\delta_{i j}(2 \vec{a} \cdot \vec{j}+\vec{a})\right] \rho_{j} \\
& =Q_{i j}+\frac{3}{2} a_{i} d_{j}+\frac{3}{2} a_{j} d_{i}+\frac{3}{2} a_{i j} Q_{j}-\delta_{i j} \vec{C} \cdot \vec{d}-\delta_{i j} i^{\prime} a^{2} Q \\
& =Q_{i j} \text { if } \vec{d}=Q=0
\end{aligned}
$$

$$
p-2 \sin :-2
$$

ic) Mipisid. $x^{2} / b^{2}+y^{2} / b^{2}+t^{2} / c^{2} \leq 1$

$$
\rightarrow Q_{i j}=\frac{1}{2} \int d \vec{x}\left(J x_{i} x_{j}-\xi_{i j} \vec{x}^{2}\right) \theta\left(x^{2} / c^{2}+j^{2} / b+z^{2} / c^{2} \leq 1\right) \rho
$$

when $\left.\vec{x}=\left(x_{1}\right), t\right)$ ad $s=$ lerg duis
$1)$

0

$$
\begin{aligned}
& \text { tyums } \rightarrow \quad D_{i j}=0 \quad \text { uhess } \quad i=j \\
& Q_{\underline{11}}=\frac{\rho}{2} \int d x d y d z\left(2 x^{2}-j^{2}-z^{2}\right) \theta\left(x^{1} / 0^{2}+y^{1 / b^{2}}+z^{2} / c^{2} \leq 1\right) \\
& \text { - } \frac{1}{2} \int \operatorname{cbc} \int d x d y d z\left(2 c^{2} x^{2}-b^{3} y^{2}-c^{2} z^{2}\right) \theta\left(x^{2}+y^{2}+z^{2} \leq 1\right) \\
& =\frac{1}{2} \operatorname{gob} c\left[2 e^{2} \int_{0}^{1} d r r^{2} \int_{-1}^{1} d\right\} \int_{D_{5}}^{1} d \varphi r^{2} v^{2} \mu_{\cos ^{2} \psi} \\
& \left.-b^{2} \int_{0}^{1} d r r^{2} \int_{-1}^{1} d\right\} \int_{0}^{15} d \varphi r^{2} w^{\prime \prime} \theta n^{\prime} \varphi \\
& \left.-c^{2} \int_{0}^{1} d r r^{2} \int_{-1}^{1} d \eta \int_{0}^{2 \pi} d y r^{2} \cos ^{2} l\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \frac{1}{2} A \operatorname{abc} c \frac{\pi}{5}\left[\frac{8}{\lambda} a^{2}-\frac{4}{\lambda} b^{2}-\frac{4}{\lambda} c^{2}\right] \\
& =\frac{4 \pi}{5} \operatorname{cbc} \int \frac{1}{10}\left[20^{2}-j^{2}-c^{2}\right] \\
& =Q \frac{1}{10}\left(2 a^{2}-b^{2}-c^{2}\right) \quad \text { vile } Q=\frac{40}{3} j a b c=\text { totcl cler }
\end{aligned}
$$

$Q_{22}=Q \frac{1}{10}\left(2 b^{2}-c^{2}-c^{2}\right) \quad$ by \quad yuman y $Q_{33}-Q \frac{1}{10}\left(2 c^{2}-b^{2}-c^{2}\right) \quad b y$ igumes
(1) hacl. $Q_{112}+Q_{(2}+Q_{13}=0$
$p-2.3: 1-3$
d) As a rel ryumatic haw, $Q_{i j}$ cen dugo be diogenline \rightarrow The most paurd fore of $U_{i j} i$ is prixipel axes bith is

$$
Q_{i j}=\left(\begin{array}{ccc}
q_{+}+q_{-} & 0 & 0 \\
0 & q_{+}+q_{-} & 0 \\
0 & 0 & -2 q_{+}
\end{array}\right)
$$

whm

$$
q_{1}=\frac{1}{2}\left(Q_{I I}-Q_{22}\right)=\frac{1}{2} \int d \vec{x} \rho(\vec{x})\left[2 x^{2}-y^{2}-z^{2}-2 y^{2}+x^{2}+z^{2}\right]
$$

(1)

$$
=\frac{2}{i} \int d \vec{x} \rho(\bar{x})\left(x^{2}-y^{2}\right)
$$

yhider courchictets: $\quad \begin{aligned} & x=r \sin \varphi \\ & y=r \sin \varphi\end{aligned} \quad x^{2}-y^{2}=r^{2}\left(\cos ^{2} \varphi-\omega^{3} \varphi\right)=r^{2} \cos 2 \varphi$

$$
\Rightarrow q-=\frac{3}{2} \int_{0}^{r} d \varphi \int_{0}^{i} d r \int d t \rho(r, \varphi, t) r^{2} \cos 2 \varphi
$$

Nou ht $\rho(r, \varphi, \dot{t})=\rho(r, \varphi+\alpha, z)$

$$
\text { pertc) vill } a=b \leadsto Q_{11}=Q_{22}=\frac{Q}{10}\left(a^{2}-c^{2}\right)
$$

$$
\begin{aligned}
& \Rightarrow q_{-}=-\frac{3}{2} \int_{0}^{i} d \varphi \int_{i_{0}+\alpha}^{\infty} \int_{0}^{\infty} d r r^{2} \int d z f(r, \varphi+\alpha, t) \cos 2 \varphi \\
& =\sum_{\alpha} \int_{\alpha} d \varphi \int_{0} d r r^{2} \int d z \rho(r, \varphi, z) \cos 2(\varphi-\alpha) \\
& =\sum_{i}^{\sum} \int_{0}^{2} d \varphi \int_{0}^{\infty} d r r^{2} \int d z \rho(r, \varphi, z)\left(\cos 2 \varphi \cos 2 \alpha+i 2 i \varphi r^{2} 2 \alpha\right) \\
& r^{\prime} \text { ini }-r^{2} \operatorname{si\varphi } \cos \varphi=x y \rightarrow \text { Hn suadem is } \alpha Q_{12}=0 \\
& =\sin 2 \alpha \cdot q-\rightarrow q_{2}=0 \text { win } x \neq \sigma
\end{aligned}
$$

(1)

$$
\begin{aligned}
& p-\sqrt{d} I-4 \\
& \underline{Q_{20}}=\sqrt{\frac{4-4}{5}} \int_{0}^{\infty} d r r^{4} \int d r f\left(r_{1} r\right) \sqrt{\frac{r}{45}} \frac{1}{2}\left(3 \eta^{2}-1\right) \\
&=\frac{1}{2} \int d \vec{x} \rho(\vec{x})\left(3 t^{2}-r^{2}\right)=D_{33}
\end{aligned}
$$

$$
\underbrace{}_{\text {Q } 1=1} \times \int d \pi \underbrace{g\left(r_{1} R\right)}_{\text {tul.0t }\}} \underbrace{P_{2} \pm 1(\xi)}_{\text {odd }}=0 \text { b zums }
$$

$$
\begin{aligned}
& Q_{22}=\sqrt{\frac{\pi}{5}} \int_{0}^{\infty} d \operatorname{rrc} \int d \pi g(r, \pi) \sqrt{\frac{\pi}{45}} \frac{1}{\sqrt{4!}} e^{i i \varphi} J\left(1-\eta^{i}\right) \\
& =\frac{3}{\sqrt{u_{1}}} \int d \vec{x} f(\vec{x}) \varphi^{2}\left(1-\eta^{2}\right)(\cos 2 \varphi+i n i \varphi)
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
x=r \operatorname{sil} \cos \varphi \\
y=r \operatorname{sil} \operatorname{si\varphi }
\end{array}\right\} \Leftrightarrow x^{2}-y^{2}=r^{2} \sin ^{\prime} \varphi\left(\cos ^{2} \varphi-\sin ^{7} \varphi\right) \\
& z=r \cos l \\
& =\frac{3}{2 \sqrt{6}} \int d \vec{x} g(\vec{x})\left(x^{2}-y^{2}\right) \\
& =\frac{2}{2 \sqrt{6}} \int d x^{2} f(\bar{x})\left[\left(2 x^{2}-y^{2}-z^{2}\right)-\left(2 y^{2}-x^{2}-z^{2}\right)\right] \frac{1}{3} \\
& =\frac{1}{\sqrt{6}}\left(D_{11}-\lambda_{22}\right) \\
& \underline{Q_{2,-2}}=\sqrt{\frac{4 \pi}{5}} \int_{0}^{\infty} d \operatorname{lr} r^{4} \int d r g(r, R) \sqrt{\frac{5}{45}} \sqrt{4!} e^{-2 i \varphi} \frac{1}{8}\left(1-\eta^{i}\right)=Q_{22}
\end{aligned}
$$

