2.3.5. Field due to distant charges

Consider the electric field generated by a charge density $\rho(\boldsymbol{y})$ that vanishes inside a sphere with radius r_{0} : $\rho(\boldsymbol{y})=0$ for $|\boldsymbol{y}| \leq r_{0}$. Show that
a) If ρ is invariant under parity operations, $\rho(-\boldsymbol{y})=\rho(\boldsymbol{y})$, then the electric field at the origin vanishes.
b) If $\rho(\boldsymbol{y})$ is invariant under rotations about the z-axis through multiples of an angle α with $|\alpha|<\pi$, then the field-gradient tensor at the origin has the form $\varphi_{i j}(\boldsymbol{x}=0)=\left(\begin{array}{ccc}\varphi & 0 & 0 \\ 0 & \varphi & 0 \\ 0 & 0 & -2 \varphi\end{array}\right)$
c) If $\rho(\boldsymbol{y})$ has cubic symmetry, i.e., if $\rho(\boldsymbol{y})$ is invariant under rotations through $\pi / 2$ about any of the three axes x, y, and z, then the field-gradient tensor at the origin vanishes.
(6 points)

2.3.7. Electrostatic interaction: Quadrupole in an external electric field

Consider the following classical model for a nuclear quadrupole moment in a crystal lattice: A rectangular parallelepiped (height A, length and width B) carries a charge e at each of its eight corners. At the center of the parallelepiped is a homogeneously charged spheroid (charge Q, semi-axes a and b). The symmetry axis of the spheroid forms an angle θ with the A-axis of the parallelepiped. The center of the spheroid is fixed, but the angle θ can vary. Let $A \gg a, B \gg b$.
a) Calculate the electrostatic interaction energy U of this system to quadrupolar order. Show that U can be expressed in terms of e, the lattice constants A and B, and the quadrupole moment Q_{33} of the spheroid in the coordinate system of the lattice.
b) Calculate the quadrupole moment Q_{33}^{\prime} of the spheroid in its principal-axes system, and then calculate Q_{33} by transforming into the lattice system. Express U as a function of the angle θ.
hint: In general, lining up the principal-axes systems would require three Euler angles. However, due to the symmetries of the problem Q_{33}^{\prime} and Q_{33} in the present case are related by only one angle, viz., θ.
c) Find the equilibrium positions of the spheroid. Make sure to distinguish the cases of prolate and oblate spheroids ($a>b$ and $a<b$, respectively), as well as between the cases $A>B$ and $A<B$.
p-2.5.5-1
2.3.5.)

$$
\begin{aligned}
\varphi(\vec{x}) \cdot \int d \vec{j} \frac{s(\vec{y})}{|\vec{x}-\vec{j}|} & =\varphi(\vec{x}=0)+\left.\vec{x} \cdot \vec{\nabla} \varphi\right|_{\vec{x}=0}+\left.\frac{1}{2} x_{i} x_{j} \frac{\partial^{2} \varphi}{\partial x_{i} \partial_{j}}\right|_{\vec{x}=0}+\ldots \\
& =\varphi_{0}-\vec{x} \cdot \vec{E}+\frac{1}{2} x_{i} x_{j} \varphi_{i j}+\ldots \\
& \equiv \varphi_{0}+\varphi_{1}(\vec{x})+\varphi_{2}(\vec{x})+\ldots
\end{aligned}
$$

0) $\rho(\vec{y})=f(-\vec{y}) \rightarrow \varphi(-\vec{x})=\int d \vec{j} \frac{\rho(\vec{y})}{|\vec{x}+\vec{j}|}=\int d \vec{j} \frac{\rho(-\vec{j})}{|\vec{x}-\vec{j}|}=\varphi(\vec{x})$
(1) \rightarrow All tus odd i \vec{x} vaind, i pertiider $\vec{E}=0$
b) $\varphi_{i j}$ is rid tymmethic 1 voorkinal both kel Uct $\varphi_{i j}$ is digale
(1)
$\varphi(\bar{x})$ obys Laplou't ij $\forall|\vec{x}|<r_{0}$

$$
\leadsto \quad \sum_{i} \varphi_{i i}=0
$$

$\Rightarrow \varphi_{i j}$ Las Un form $\varphi_{i j}=\left(\begin{array}{ccc}\varphi_{+}+\varphi_{-} & 0 & 0 \\ 0 & \varphi_{+}-\varphi_{-} & 0 \\ 0 & 0 & -2 \varphi_{+}\end{array}\right)$
(1)
whe $\varphi_{-}=\frac{1}{2}\left(\varphi_{1!}-\varphi_{22}\right)$

$$
\begin{aligned}
\rightarrow \underline{\varphi_{2}(\bar{x})=} & \frac{1}{2} r^{2} \dot{n}^{2} \ell \omega_{0}^{7} \varphi\left(\varphi_{+}+\varphi_{-}\right) \\
& +\frac{1}{2} r^{2} \omega^{1} \ell \dot{n}^{7} \varphi\left(\varphi_{+}-\varphi_{-}\right) \\
& +\frac{1}{2} r^{2} \omega_{0}^{2} \ell\left(-2 \varphi_{+}\right) \\
= & \left.\frac{1}{2} r^{2}\left[(1-] \omega^{2} \vartheta\right) \varphi_{+}+\dot{\omega}^{7} \ell \cos 2 \varphi \varphi_{-}\right]
\end{aligned}
$$

Rototivel ivenien of $f(\bar{y})$ iphis rotaticel ivenicu of $\varphi(\bar{x}), 0 l \dot{\sim}$ perticer of $\varphi_{2}(\bar{x})$

$$
\begin{aligned}
& p-23,5-2 \\
& \rightarrow \frac{\varphi_{2}\left(r, l_{1} \varphi+\alpha\right)}{}=\frac{1}{2} r^{2}\left[\left(1-3 \sin ^{\prime} \ell\right) \varphi_{+}+\operatorname{w}^{\prime} \theta \cos 2(\varphi+\alpha) \varphi\right] \\
& \frac{\varphi_{2}(r, \ell, \varphi)}{}
\end{aligned}
$$

(1) $\quad \therefore \quad \varphi_{-} \cos (2 \varphi+2 x)=\varphi_{-} \cos 2 \varphi \quad \rightarrow \quad \varphi_{-}=0$
 abat ong of Un Krem exas $x_{1} j 1 z$.
D) $\leadsto \varphi_{-}=0$ den to iumien uher wotolion ebot t-ctisi Totoh ebut \times ar $\rightarrow \quad l \rightarrow l+\pi / 2$
Int ivomion of $f(5)$ iptia ivomien of $\varphi(x)$

$$
\leadsto \begin{aligned}
\varphi_{2}\left(r, v+\frac{5}{2}, \varphi\right) & =\frac{1}{2} r^{2} \varphi_{+}[1-] \cos ^{2}(v+\sigma(2)] \\
& \vdots \frac{1}{2} r^{2} \varphi_{+}\left[1-1 \cos ^{2} v\right]
\end{aligned}
$$

(1) $\rightarrow \varphi_{+} \cos ^{2}(\mu+\pi-12)=\varphi_{+} \cos ^{2} \theta \rightarrow \underline{\varphi_{+}}=0 \rightarrow \varphi_{i j}=0$

$$
p-2.7 . x-1
$$

2．3．7．，${ }^{\circ}$ ）$U J$ 5． 6 as Griter the polvid den to un 8 lerges

$$
\varphi(\bar{x})=e \sum_{k=1}^{p} \frac{1}{\left|\vec{x}-\vec{y}^{|k|}\right|} \quad \text { whe } \quad \vec{y}^{|k|}=\frac{1}{2}\left(\begin{array}{c}
\pm B \\
\pm ⿹ 丁 口 \\
\pm k
\end{array}\right)
$$

We and
（1）

$$
\begin{aligned}
& \varphi_{0}=\varphi(\vec{x}=0)=e \sum_{k=1}^{8} \frac{1}{\left|\vec{y}^{(k)}\right|}=e \frac{8}{\sqrt{A^{2} / k_{1}+2 a^{2} / k_{1}}}=\frac{16 e}{\sqrt{A^{2}+2 J^{2}}} \\
& \vec{E}=-\vec{\nabla} \varphi(\vec{x}=0)=\sum_{\alpha=1}^{8} \frac{-\vec{y}^{(x)}}{\left|\vec{b}^{(\lambda)}\right|^{2}}=0 \quad b \quad \text { ghme } y \\
& \varphi_{i j}=\left.\frac{\partial^{2}}{\partial x_{i} \partial_{x_{j}}} \varphi\right|_{\vec{x}=0}=\left(\begin{array}{ccc}
\varphi & 0 & 0 \\
0 & \varphi & 0 \\
0 & 0 & -2 \varphi
\end{array}\right) \quad \begin{array}{l}
\text { bymmetry, see Problem } \\
\text { sy.3.5 b) }
\end{array}
\end{aligned}
$$

0
wh
（1）

$$
\varphi=\varphi_{11}=\left.\frac{\partial^{2}}{\partial x^{2}}\right|_{\vec{x}=0} e \sum_{k=1}^{8} \frac{1}{\left|\vec{x}-j^{(k)}\right|}=e\left(\frac{\left.J y_{j}^{(x)}\right)^{2}}{\left|\vec{y}^{(2)}\right|^{2}}-\frac{1}{\left|\vec{j}^{(x)}\right|^{2}}\right)
$$

Befin $r_{0}:=\sqrt{A^{2}+2 A^{2}} \Rightarrow\left|H^{(A)}\right|=\frac{1}{2} r_{0}$

$$
\begin{aligned}
\rightarrow \quad \varphi_{0} & =\frac{16 e}{r_{0}} \\
\underline{\varphi} & =e\left(\frac{3 B^{2} / 4}{\left(r_{0} / 2\right)^{5}}-\frac{1}{\left(r_{0} / 2\right)^{2}}\right) \\
& =e \frac{1}{r_{0}^{5}}\left(\frac{3}{4} B^{2} \cdot 8 \cdot 4-\not A^{2} r_{0}^{2}\right)=\frac{8 e}{r_{0}^{5}}\left(3 B^{2}-A^{2}-2 J^{2}\right)=\frac{2 e}{r_{0}^{5}}\left(J^{2}-A^{2}\right)
\end{aligned}
$$

（1）

$$
\sum_{i} Q_{i i}=0 \curvearrowright \varphi_{0} Q-\varphi Q_{33}
$$

$$
p \cdot 2.3 .2-2
$$

rucork: Kine $Q_{3 j}$ is the produpoh wenent of Un sphesrid i the lettine courlinich gole!
 howe los the form

$$
Q_{i j}^{\prime}=\left(\begin{array}{lll}
q & 0 & 0 \\
0 & q & 0 \\
0 & j & -2 q
\end{array}\right)
$$

1
Tronsform to ken lottin yshe by mases of rototio matrius (amsof 10/21) D:
(1)

$$
\begin{aligned}
& Q_{i j}=\sum_{n, m} J_{i n} \alpha_{n n}^{\prime} \lambda_{i n} \\
& Q_{22}=\partial_{31} Q_{11}^{\prime} D_{31}+\partial_{32} Q_{22}^{\prime} \partial_{32}+\partial_{32} Q_{23}^{\prime} \partial_{23} \\
& \left.=q \lambda_{31}\right)^{2}+q\left(\lambda_{32}\right)^{2}-2 q\left(\Delta_{32}\right)^{2} \\
& =q\left[\left(\lambda_{31}\right)^{2}+\left(\lambda_{32}\right)^{2}-2\left(\Delta_{33}\right)^{2}\right]
\end{aligned}
$$

(1) Now $\lambda_{i j}$ is a orkojal bopo $\rightarrow D_{21}^{2}+\lambda_{32}^{2}+\lambda_{31}^{2}=1$

0 ad D most adije the $z^{\prime}-0 x i s$ vile ith $z-c x i j \rightarrow D_{y s}=$ wal

$$
\rightarrow Q_{j 3}=q\left[1-D_{j 3}{ }^{2}-2 D_{j 3}{ }^{2}\right]=q\left[1-2 \omega_{3}{ }^{2} \varphi\right]
$$

Finally, Problem 2.3.1 with $q=\frac{Q}{10}\left(b^{2}-a^{2}\right)$

$$
\begin{aligned}
\therefore= & =\varphi_{0} Q-\frac{8 e}{r_{0}^{5}}\left(D^{2}-A^{\prime}\right) q\left(1-J \omega_{2}^{\prime} \dot{y}\right) \\
& \left.=\varphi_{0} \alpha+\frac{8 e}{r_{0}^{5}} \frac{Q}{10}\left(A^{2}-\right]^{2}\right)\left(a^{\prime}-b^{2}\right)\left(j \omega_{0}^{\prime} l-1\right)
\end{aligned}
$$

$$
p 2.7 .7-3
$$

c) $1 \eta^{2}-1$ is $\operatorname{minin} l$ for $\eta=0$

$$
\Leftrightarrow l=\pi / 2
$$

mexined for $\eta= \pm 1$

$$
\Leftrightarrow \quad \ell=0, \sigma
$$

0

$$
\begin{array}{ll}
l=\frac{\pi}{2} & \text { if }\left(A^{2}-B^{2}\right)\left(e^{2}-b^{2}\right)>0 \\
l=0 & \text { if }\left(A^{2}-B^{2}\right)\left(a^{2}-b^{2}\right)<0
\end{array}
$$

$\sim_{(\text {njer })}^{\text {polch }}$ phewid $(a>b)$ \square
(1)
oblah (c<b): flips Un tro cons (dije)
(1) $e Q<0$: Fhips K_{n} too coses ege.

