1. Use GeoGebra (or any other interactive geometry software) to do the following:

Construct a quadrilateral $ABCD$ and let M, N, P, and Q be the midpoints of the sides. Construct the quadrilateral $MNPQ$. Find the areas of both quadrilaterals, as well as the four small triangles at the corners of $ABCD$. Find an equation relating the areas of the four triangles, and find an equation relating the areas of the quadrilaterals. Print out a picture with the calculations that demonstrate your equations.

2. Prove your conjectures from #1.

4. In this problem you will prove the leftover case of Theorem 12, from our class discussion. In the following diagram assume that M and N are the midpoints of the segments AB and AC, and let the perpendicular bisectors of these segments meet at point X. Let P be the midpoint of BC, draw the line XP, and prove that XP is perpendicular to BC. [Hint: Follow a method very similar to what we did in class for the other case; start by drawing the lines from X to the vertices of the triangle.]
5. Given: $ABCD$ is a parallelogram, X is a point on line AB, and Y is a point on line BC. Prove that $\triangle DCX$ has the same area as $\triangle ADY$.

6. Given $AB = AC = BC$. Let P be a point inside the triangle. Let a, b, and c be the (perpendicular) distances from P to AB, AC, and BC, respectively. Let h be the distance from A to BC. To prove: $a + b + c = h$. [Hint: Think about areas.]

7. For any triangle ABC, prove that the angle bisectors are concurrent. [Hint: Structure the proof like we did for Theorem 12, by taking two angle bisectors and letting X be the point where they intersect. At some point it will be a good idea to draw in some extra lines.]
8. (a) Given that A, B, C are on the circle below and that AC is a diameter of the circle, prove that $\angle ABC$ is 90°.

(b) Now suppose given a right triangle ABC, where AC is the hypotenuse. Give two proofs that the points A, B, and C lie on a circle whose center is at the midpoint of AC, following the suggestions below.

Proof 1: Let M be the midpoint of AC. Show that $BM = AM$. (Hint: Draw lines through M parallel to BC and AB, as well as the line \overrightarrow{AM}. Use congruent triangles.)

Proof 2: Let M be the midpoint of AC and draw the circle with center M and radius MC. Assume that B is not on this circle. Then either B lies inside the circle or outside the circle. Do the two cases separately, and in each case use (a) to deduce a contradiction.

9. Given: A, B, and C lie on the circle with center O. Prove that $\angle AOB = 2 \cdot \angle ACB$.

[Note: Compare this to problems 3 and 8 of HW#2. This is another case where one really needs two different pictures, and proofs, to get the full result.]