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1 Stable categories and spectra
via model categories

by Daniel Dugger

1.1 Introduction

The Ærst popular model category of spectra was due to BousÆeld-Friedlander [7], and
for many years it was the only one in common use (a previous model due to K. Brown
[8] never really caught on). But this category does not admit a suitable smash product
on the model category level. Following an early but limited attempt by Robinson [47],
in the late 1990s several new model categories of spectra appeared that Æxed this
problem. These days a working topologist should know a little about each of these
models, and about their various advantages and disadvantages.
Here is a list of the main players:

(1) BousÆeld-Friedlander spectra
(2) Symmetric spectra
(3) Orthogonal spectra
(4) EKMM spectra
(5) �-spaces (which only model connective spectra)
(6) W-spaces (generalizing “functors with smash product”).

While it would be nice to pick out one model and say this is the one everyone
should learn, life is not that simple. An algebraic topologist is likely to encounter
each of the above models at some point, and some models will have advantages over
others depending on the context. For example, at this point there is a developing
consensus that orthogonal spectra work best for equivariant homotopy theory; but
some constructions—like Waldhausen K-theory—naturally produce a symmetric
spectrum, not an orthogonal one. Functors with smash product (FSPs) have largely
disappeared from the stage, being eclipsed by (2) and (3), but they are still worth
a passing familiarity. In this survey we concentrate on (1)–(4), with (5) and (6) only
making a quick appearance at the end.

To describe the organization of this survey, it is helpful to use an analogy from
daily life: the automobile. For most of us, an automobile is a box with wheels that has
certain behaviors when we turn the steering wheel or step on the pedals. That very
primitive level of understanding is su�cient for most day-to-day functioning, and it is
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rare that any of us have to actually look under the hood. To some extent, the same
holds true of spectra. Much of daily life can be covered just by knowing that there
exists a model category of spectra with a smash product satisfying a small list of basic
properties. This kind of superÆcial knowledge is Æne for driving around town, but
unlike the automobile analogy my experience has been that nearly every trip on the
homotopy-theory highway requires one or two stops to mess around with the engine.
It bothers me that this is so, and I usually Ænd myself cursing at the injustice when I
have to do it, but this seems to be the nature of the subject.
To continue beating our analogy to death, when one is messing around under the

hood there is simply no substitute for the technical manuals. For spectra these are
[18], [26], [38], [52], and [25]. The present survey cannot substitute for those. Instead,
we concentrate on two aims. The Ærst is to give a kind of “driver’s manual” to the
world of stable model categories, monoidal model categories, and general properties
that are satisÆed by all the commonly-used model categories of spectra. This takes
roughly the Ærst half of the paper. The second goal is to give enough of a technical
introduction to the di�erent categories that a reader can conÆdently go open up the
manuals and feel that they have a Æghting chance.

Before moving on I want to at least give the deÆnitions of the basic objects right
away, so here they are:

1. A classical spectrum is a collection of pointed spaces Xn for n � 0 together with
structure maps �n : S1 ^Xn ! Xn+1. The notion of a spectrum originated with
Lima [33], but the Ærst model structure was developed by BousÆeld-Friedlander.
The phrase “BousÆeld-Friedlander spectra” sometimes gets used for these objects,
even though the deÆnition of the objects themselves came much earlier. They
are also sometimes called “prespectra”, mainly in the work of Peter May and his
collaborators. Note that a suspension spectrum is a spectrum where the structure
maps are all identity maps, and an ⌦-spectrum (read “omega-spectrum”) is one
where the adjoints Xn!⌦Xn+1 of the structure maps �n are weak equivalences.

2. A symmetric spectrum is a classical spectrum where each Xn comes equipped
with an action of the symmetric group ⌃n, and where each of the iterated structure
maps

�p : (S1)^(p) ^Xq! Xp+q

is ⌃p ⇥⌃q-equivariant. Here �p is actually a composite of associativity maps with
p di�erent applications of � , the ⌃p ⇥⌃q-action on the domain is the evident one,
and the action on the target comes from the embedding of groups ⌃p ⇥⌃q ,! ⌃p+q
where the image consists of permutations that permute the Ærst p elements and last
q elements without mixing the two blocks.

3. An orthogonal spectrum is an assignment that sends each Ænite-dimensional real
inner product space V to a pointed space XV equipped with an action of the
orthogonal group O(V ), together with structure maps �V ,W : SV ^XW ! XV�W
that are O(V )⇥O(W )-equivariant. In addition, to any isometry V !W is assigned
(continuously) a homeomorphism XV ! XW , and these must be compatible with all
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the previous structure. Finally, the structure maps must satisfy some evident unital
and associativity conditions. (Note that if we drop the orthogonal group actions
then the assignment V 7! XV together with the structure maps is often called a
coordinate-free spectrum).

4. The deÆnition of EKMM spectrum cannot be given in just a few lines, but the
following words at least give a rough idea. An EKMM spectrum is a coordinate-free
⌦-spectrum where the adjoints of the structure maps are all homeomorphisms,
together with an action of a certain linear isometries monad on this spectrum, and
satisfying an extra “S-unital” condition.

5. For each n � 0 write n+ = {0,1, . . . ,n} for the pointed set with 0 as basepoint. Let
F be the category whose objects are all the n+ and whose morphisms are the based
maps. A �-space is simply a functor F! Top⇤.

6. Let W be the category of pointed spaces homeomorphic to Ænite CW -complexes.
Regard this as a category enriched over topological spaces. A W-space is just
an enriched functor � : W ! Top⇤. Note that for every X and Y there is a
natural map X! Top⇤(Y,X ^Y ) (adjoint to the identity); composing with the map
Top⇤(Y,X ^Y )! Top⇤(�(Y ),�(X ^Y )) and taking the adjoint therefore gives a
family of natural structure maps

X ^�(Y )!�(X ^Y ).

These maps are broad generalizations of the structure maps for classical spectra—
for example, we could get a classical spectrum by setting �n =�(Sn) and letting
X = S1 (or more generally by Æxing Y and setting �Y

n = �(Sn ^Y )). The notion
of W-space is roughly equivalent to that of “simplicial functor”, and the objects
classically called “functors with smash product” are the monoids in this category.

Remark 1.1.1. Note that what we here call “EKMM spectra” were called “S-modules”
when Ærst introduced, and are often still called that. Unfortunately, both symmetric
spectra and orthogonal spectra are also S-modules, just in di�erent contexts. So the
phrase “S-module” is now very ambiguous, whereas “EKMM spectrum” cannot be
confused with anything else.

From a historical perspective, the objects in (1) and (5) date to the 1960s and 1970s
and vastly predate all of the others in the above list. The objects in (2), (3), (4), and
(6) all appeared in the 1990s, and their importance is that these admit a symmetric
monoidal smash product on the model category level (sometimes colloquially referred
to as the “point-set level”), rather than just on the associated homotopy category—see
Section 1.1.3 below for more discussion of this. (The objects in (6) actually Ærst appeared
in the 1970s, but didn’t enter the limelight until the 1990s with the other models).
Having such a point-set level smash product quickly led to a Øurry of advances,

and nowadays this is a standard part of any algebraic topologist’s toolkit. But because
there are four models and not just one, learning to use the toolkit also means learning
what the di�erent models do best, and how to navigate between them. The di�erent
models come with their own advantages and disadvantages, or pros and cons. These
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terms don’t feel quite right, though, because the pros and cons are so closely linked. If
something good only happens because of something bad, is the “bad” thing really all
that bad? Rather than delve into this philosophical quagmire, we take the elementary-
school approach in the table below (focusing only on the three most commonly used
models):

Things that make us happy Things that make us sad

EKMM
spectra

All objects are Æbrant. The unit is not coÆbrant.

Weak equivalences are easy.
Plays well with the linear isome-
tries operad.

DeÆnition of the category is
quite hard, with several layers
of machinery.

Symmetric
spectra

Easy deÆnition of the objects. Weak equivalences are hard to
understand.

The unit is coÆbrant. Need Æbrant-replacement, and
this can destroy other structure.
One can make a theory of gen-
uine G-spectra, but it feels a bit
unnatural.

Orthogonal
spectra

Works well for G-spectra. Unit
is coÆbrant.

Need Æbrant-replacement.

Weak equivalences are easy.
Objects are not as easy as sym-
metric spectra, but not hard.

By “weak equivalences are easy” we mean that they coincide with the ⇡⇤-isomorphisms
on the underlying classical spectrum. The issue of whether every object is Æbrant has
a surprisingly large simplifying e�ect on how one ends up handling certain monoidal
phenomena—we discuss this more in Section 1.3.2.

For the rest of this introduction I am going to do something a bit unusual. Mathe-
matical narratives tend to have two sides: one consists of the deÆnitions and theorems,
and the other is the story behind those deÆnitions and theorems (sometimes called
motivation). The latter might try to answer why a certain deÆnition is the “right” one,
or why a certain theorem should be expected. It is an odd phenomenon that these two
sides of mathematical narration sometimes end up getting in the way of each other.

To help try to combat this, for the rest of this introduction I am going to give a
series of mathematical vignettes that attempt to highlight various important issues or
ideas behind the “story” of spectra. These come in no particular order, and are also
by no means exhaustive. The hope is that a reader can get some basic picture from
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the vignettes right away, even if they don’t make complete sense on Ærst reading. Be
assured that we will return to each of these ideas in more formal ways later in the text.

1.1.1 Why use model categories?

Let me begin by painting a picture. Somewhere up in the heavens is a wondrous
paradise where lives the homotopy theory of spectra. You are welcome to think of
this realm as an inÆnity-category if you like, but I will intentionally keep things more
vague. Regardless, it is a magical shangri-la where the theories of associative and
commutative ring spectra, their modules, equivariant analogs, and so forth all work
out easily and naturally. The gods who walk that land are happy and content, and can
do many Æne things.
Most of us mortals cannot inhabit this kingdom directly, and so instead we gain

limited access by choosing a model. As with all attempts at creating paradise down
on earth, this doesn’t entirely succeed. These models are not canonical, di�erent
models come with di�erent pros and cons, and no one model seems to be completely
satisfactory for everything. But such is the price we pay for our mortality. Dan Kan
used to compare choosing a model to choosing coordinates on a manifold, and Je�
Smith once remarked that model categories give a way of bringing inÆnity-categorical
phenomena down into the realm of 1-categories. These are good ways of thinking
about the situation.

As one reaches for more and more sophisticated structures, any Æxed model seems
to inevitably run its course. Early models of spectra adequately capture the homotopy
category but fail to admit a point-set-level smash product. Other models capture the
smash product but fail to give an adequate theory of commutative ring spectra, or of
equivariant spectra. Recent work [43] suggests that none of the existing models can
handle coalgebra spectra correctly. The homotopy theorists’ version of Murphy’s Law
is that after choosing any particular model for spectra, a topologist will eventually
want to do something where the model seems to get in the way and make things
harder than they should be.
This picture so far gives a somewhat skewed view, because the heavenly paradise

is not always one’s main goal. Down here on earth we have concrete objects like
manifolds, chain complexes, and di�erential graded algebras, and often at the end
of the day we are trying to prove theorems about these concrete things. The more
one ascends into the heavens, the more blurred these objects become in their very
existence. It is not always clear what inÆnity-categorical theorems are actually saying
about our concrete objects, and this is another place where model categories turn out
to be helpful. In addition to giving us a view into heavenly realms, model categories
are also a tool for taking theorems from those realms and applying them down here
on earth.
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1.1.2 Where do models come from?

There is no one answer to this question, but the following schema covers very many
cases. Recall that for any two objects X and Y in a “homotopy theory” there is a
homotopy mapping space hMap(X,Y ), well-deÆned up to weak homotopy equivalence.
If X and X 0 are related in some homotopy-theoretic sense, then there will be some
corresponding relation between hMap(X,Y ) and hMap(X 0 ,Y ). The simplest example
is that if there is a map X! X 0 then there should be an associated hMap(X 0 ,Y )!
hMap(X,Y ).
If C is a collection of “test objects” in our homotopy theory, we can attempt

to understand an object Y by remembering the collection of all function spaces
hMap(U,Y ) for U 2 C. That is, we understand Y by remembering how all of our test
objects map into it. That’s the basic idea. If there are some relations between our test
objects, we should remember the corresponding relations between our mapping spaces.
In this way we are attempting to model our homotopy theory as certain functions
C! Top. Often C will be a category, and so we actually look at functors Cop! Top.
For example, the homotopy theory of spectra should have objects S�n for n � 0,

together with equivalences ⌃(S�n) ' S�(n�1). If we take these as our test objects, then
a spectrum Y will be modeled by the collection of spaces Yn = hMap(S�n,Y ) together
with the relations ⌦Yn ' Yn�1. In this way we arrive at the classical deÆnition of an
⌦-spectrum.
Instead of starting with the objects S�n we could just start with S�1 together with

the spectra In = (S�1)^(n). The symmetric group ⌃n acts on In, and so there will be an
induced action on the function complexes Map(In,Y ). This perspective leads directly
to the notion of a symmetric spectrum.
Likewise, the fact that the orthogonal group O(n) acts on Sn might lead one to

believe that it should also act on S�n, in which case there would be an induced
action of O(n) on Yn =Map(S�n,Y ). Thus one is led to the notion of an orthogonal
spectrum.

1.1.3 The smash product

Let’s go back to the most basic model of a spectrum: a collection of pointed spaces
Xn for n � 0 with structure maps �n : S1 ^ Xn ! Xn+1. Given spectra X and Y ,
how could we make a spectrum that deserves to be called X ^ Y ? In level 0 there
is only one thing that makes sense, which is X0 ^Y0. We will need a structure map
⌃(X0^Y0)! (X^Y )1, and there are two obvious choices: we could use �X to get into
X1 ^Y0, or we could use �Y to get into X0 ^Y1. There is no reason for choosing one
over the other, so let’s randomly choose (X^Y )1 = X0^Y1. Similar reasoning leads to
choices for (X^Y )n for each n, and it’s not hard to believe that we will be Æne as long
as we don’t keep making the same choice over and over again: that is, we should make
sure to use each of �X and �Y inÆnitely many times. These considerations do indeed
produce a spectrum X ^Y , but because of all the choices it is far from canonical. In
fact we have an uncountable collection of models for X ^ Y . In the old days these
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were called handicrafted smash products. One can prove that they all are homotopy
equivalent, thereby giving a well-deÆned smash product on the homotopy category,
but clearly this is not a very good state of a�airs. Still, this at least shows immediately
that there is some kind of smash product around.

Rather than constructing X^Y by making these arbitrary choices, another approach
is to build all the choices into the spectrum from the beginning. All the modern
incarnations of the smash product involve some form of this, but let us start by
exploring the most naive. We still take (X ^Y )0 = X0 ^Y0, but now for (X ^Y )1 we
might Ærst make the guess (X0 ^Y1)_ (X1 ^Y0). The suspension operators �X and
�Y then take us into opposite wedge summands, which is no good, so we Æx this by
identifying them in an appropriate way:

(X ^Y )1 = pushout of [ X0 ^Y1 S1 ^ (X0 ^Y0)oo // X1 ^Y0 ]

where the maps are the evident ones coming from �Y and �X . Note that the left-
pointing map must involve the twist map, used to commute the S1 and the X0. We
leave the reader to derive the deÆnition for (X ^Y )n for n � 2, along the same lines.

This deÆnition does not give us what we want, but it is informative to see why. The
Ærst problem one encounters is that the sphere spectrum S is not a unit (recall that
S is the suspension spectrum of S0). To see this, let us compute S ^ S . One readily
checks that (S^S)0 = S0 and (S^S)1 = S1, but (S^S)2 is the colimit of the diagram

(S0 ^ S2) (S1 ^ S1) (S2 ^ S0)

S1 ^ (S0 ^ S1)

� 44�hh

S1 ^ (S1 ^ S0)

��jj � 66

S1 ^ S1 ^ (S0 ^ S0).

id^� 44id^�jj

Replacing each parenthesized (Si^Sj ) in the diagram with (Xi^Yj ) gives the diagram
for (X^Y )2 and helps one understand the various maps. Each map in the diagram uses
associativity, twist, and the structure maps from S in the evident way—for example,
the left map in the bottom row commutes the second S1 past the S0 and then uses
the structure map on the rightmost two terms. Upon analyzing these maps, one Ænds
that they are all canonical identiÆcations (labelled � in the diagram), except for one:
this last map involves the twist map on S1 and so ends up being �� . Consequently,
the colimit of this diagram is the coequalizer of (id,�id) : S2◆ S2, which is RP2. So
we see that S ^ S , S .
Exercise 1.1.2. For an arbitrary spectrum Y , convince yourself that under the above
deÆnition (S ^Y )2 is the colimit of the following diagram:

S1 ^ S1 ^Y0
t^id
✏✏

id^� // S1 ^Y1 � // Y2

S1 ^ S1 ^Y0.
id^�

88
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Working through the simple example preceding Exercise 1.1.2 already suggests the
key for Æxing the situation. The problem is that we are not keeping track of the “twists”
that occur when we apply our structure maps, so we need to build in some machinery
for doing so. This is what symmetric spectra do, by building in symmetric groups.
In symmetric spectra, (X ^ Y )2 is made from X0 ^ Y2, X2 ^ Y0, and two copies of
X1^Y1 (indexed by the elements of the symmetric group ⌃2), and then one quotients
by the same kind of relations we saw above. This Æxes the problem. See Section 1.7.2
to Ænd this worked out in detail.
Orthogonal spectra solve the problem in an even more elegant way (though se-

cretely it is really the same way). Here spectra are indexed on the category of
Ænite-dimensional inner product spaces, and the direct sum operation on this category
already has twist maps built into it. If X is an orthogonal spectrum then XV�W and
XW�V are di�erent objects, though the twist t : V �W !W �V gives a homeomor-
phism between them. The moral here is that indexing things on inner product spaces
forces one to keep track of the relevant twists in the very notation.

There is another way to see that symmetric groups should come into the picture.
Let us imagine that we have a homotopy theory of spectra (o� in some shrangri-la)
and we are attempting to model spectra X by the collection of mapping spaces
Xn =Map(I^(n),X) where I is a model for S�1. We need to ask ourselves: if we have
all the {Xn} and all the {Yn}, what is the best we can do in terms of approximating the
spaces {(X ^Y )n}? Clearly if p + q = n we will have maps

Map(I^(p),X)^Map(I^(q),Y )!Map(I^(p+q),X ^Y ) = Map(I^(n),X ^Y ) (1.1.4)

induced by the shangri-la smash product. However, this kind of process only gives
maps I^(n)! X ^Y which send the Ærst set of “coordinates” into X and the second
set into Y . Not all maps will look this way! Indeed, the action of ⌃n on I^(n) induces
an action on Map(I^(n),X ^ Y ) and lets us scramble the “coordinates” any way
we want. This suggests, though, that if we use the maps in (1.1.4) together with a
superimposed symmetric group action, then we might get a sensible approximation to
Map(I^(n),X ^Y ). This leads us to write down the space



_

p+q=n
(⌃n)+ ^⌃p⇥⌃q

(Xp ^Yq)
��

⇠

as a model for Map(I^(n),X ^ Y ), where the equivalence relation just comes from
thinking about the evident ways that the maps (1.1.4) interact with symmetric group
actions and the structure maps. We have just invented the smash product for symmetric
spectra!

1.1.5 Coordinate-free spectra

The world of classical spectra provides inverses (under the smash product) for the
standard spheres Sn. If V is a Ænite-dimensional real vector space then its one-point
compactiÆcation SV is isomorphic to SdimV , and so of course SV has an inverse
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in this world as well. But this inverse is not canonical, due to the fact that the
isomorphism V � RdimV is not canonical. This might seem like a small point, but in
some constructions (like Pontryagin-Thom) it is very convenient to have a canonical
inverse for SV .

A larger issue arises in the setting of G-equivariant homotopy theory. Here one has
di�erent spheres SV for each Ænite-dimensional G-representation V , so to introduce
inverses for these it is not enough to just work with the standard spheres Sn. Thus, for
various reasons we are led to the need for a notion of “coordinate-free” spectra.

The Ærst idea of what a coordinate-free spectrum should be is an assignment
V 7! XV that sends every Ænite-dimensional vector space to a pointed space. For
V ✓W there should be structure maps S?? ^XV ! XW , but already one runs into
trouble as far as what sphere to put in the domain. This sphere should be related
to the complement of V in W , but there is no canonical such complement. To get
around this, we assume that the vector spaces have inner products on them so that we
can take orthogonal complements. If W �V denotes the orthgonal complement of V
in W , then our structure map should have the form SW�V ^XV ! XW .
Finally, since the collection of all Ænite-dimensional inner product spaces is not

a set, we prefer to set things up so that there is an intrinsic bound to where these
live—an underlying “universe”. To be precise, deÆne a May universe to be a real
inner product space of countably-inÆnite dimension. Any universe U is isometric to
R1 with the dot product, but not canonically. Then a coordinate-free spectrum on
U is deÆned to be an assignment V 7! XV for Ænite-dimensional V ✓ U, together with
maps SW�V ^XV ! XW for every pair V ✓W ✓ U. These must satisfy some evident
unital and associativity conditions.

Example 1.1.3. The deÆnitions of some familiar classical spectra immediately general-
ize to give coordinate-free spectra:

(a) The sphere spectrum is V 7! SV .

(b) If A is an abelian group, the Eilenberg-MacLane spectrum HA is the spectrum
V 7! C(SV ;A) where for any pointed space X the space C(X;A) is the Dold-Thom
space of Ænite conÆgurations of points on X labelled by elements of A.

(c) The real cobordism spectrum MO is V 7! Th(EO(V )⇥O(V ) V ! BO(V )) where
O(V ) is the group of isometries of V (with its natural topology) and Th(E! B) is
the Thom space. This is also commonly written in the form V 7! EO(V )+^O(V )SV .

For orthogonal spectra, it is important that we are able to form the direct sum of our
inner product spaces. That is to say, if X is an orthogonal spectrum we need XV�W
to make sense when XV and XW do. For this reason we cannot restrict ourselves to
subspaces of a universe U anymore. To avoid set-theoretical issues we must either Æx
a small skeletal subcategory of the category of Ænite-dimensional inner product spaces,
or else Æx some Grothendieck universe at the very beginning. See Remark 1.5.4 for
more details.
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1.1.6 Rings, modules, and algebras

Let (C,⌦,S) be a symmetric monoidal category. A monoid in C is an object R together
with a unit map S! R and a product R⌦R! R satisfying the evident associativity
and unital actions. A monoid in (Ab,⌦,Z) is just a ring, and for this reason we will
sometimes call monoids in other symmetric monoidal categories “rings” as well.

If R is a ring in C then one likewise has notions of left and right R-modules, and if
R is a commutative ring then one can talk about R-algebras. The deÆnitions are all
the obvious ones.
In the 1970s after Boardman had constructed the symmetric monoidal structure

on Ho(Spectra), one could apply the above ideas and talk about ring- and module-
spectra. Nowadays these would probably be called “homotopy ring spectra”, or “naive
ring spectra”, to di�erentiate them from more rigid notions. Suppose that R is one of
these homotopy ring spectra and that f : M ! N is a map of left R-modules. One
would like for the homotopy coÆber Cf to be again a left R-module in a canonical
way, but this doesn’t work out. Try it: there is a diagram in the homotopy category
that looks like

R^M //

✏✏

R^N //

✏✏

R^Cf

M // N // Cf

and both rows are homotopy coÆber sequences, so there does indeed exist an extension
µ : R^Cf ! Cf (apply [�,Cf ] to the top coÆber sequence and use the resulting
long exact sequence). However, the homotopy class of µ is not unique and moreover
one cannot prove that µ satisÆes the necessary associativity condition.
So this is a deÆciency. Using the naive deÆnitions of rings and modules in

Ho(Spectra) does not lead to a situation where we can do homotopy theory for
R-modules. The problem is the usual one: the homotopy category itself is not robust
enough for most purposes. The above problem with coÆbers is coming from the fact
that the homotopy category doesn’t have colimits.

This was one of the motivations for desiring a symmetric monoidal smash product
on the model category level. Assuming that one has a model category Spectra with a
smash product that commutes with colimits in either variable, it follows at once that
colimits of left R-modules are again left R-modules in a canonical way. One would
hope that the adjoint functors

R^ (�) : Spectra� R�Mod: U

would lift the model category structure on Spectra to a corresponding model structure
on the category of left R-modules. Similarly, if R is a commutative ring spectrum
then one might hope for a model category structure on R-algebras, and also one on
commutative R-algebras.
In short, the hope would be that the model structure on Spectra could be passed

to various categories of algebraic structures on spectra. This basically works out, but
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it doesn’t work out for free. One approach was developed in [18] for topological model
categories where all objects are Æbrant, which reduced things down to their so-called
“CoÆbration Hypothesis”. For more general model categories another approach was
developed by Schwede-Shipley [52], who identiÆed the need for a separate axiom they
called the “Monoid Axiom”. The Monoid Axiom is one of those things that is safely
left under the hood on regular days, but that one needs to be prepared to play with
when the car breaks down.

We discuss the Monoid Axiom and its applications to model categories of modules
and algebras in Section 1.3.2.

1.1.7 The Lewis enigma

In 1991, before the advent of the modern categories of spectra, Lewis discovered
an argument showing that some of the expected properties of such categories were
mutually inconsistent [31]. It is worth understanding this argument not only to see
how the modern categories of spectra interface with it, but also because this same
argument explains some of the complications in various theories of commutative ring
spectra.
Let S be a category with the following properties:

(A1) There exists a symmetric monoidal functor ^ : S⇥ S! S.
(A2) There exists an adjoint pair ⌃1 : Top⇤� S : ⌦1.
(A3) There is a natural transformation

⌘X,Y : ⌃1(X ^Y )! ⌃1X ^⌃1Y
that is compatible with the associativity and commutativity isomorphisms for
(Top⇤,^) and (S,^).

(A4) ⌃1S0 is the unit for ^, and ⌘ is compatible with the unital isomorphism.
(A5) There is a natural weak equivalence ⌦1⌃1X ' QX , where as usual one deÆnes

QX = hocolimn⌦
n⌃nX .

Note that putting X =⌦1E and Y =⌦1F into (A3) and using the counit of the
adjunction gives a natural transformation ✏E,F : ⌦1E ^⌦1F!⌦1(E ^F), and this
will also be compatible with the associativity and commutativity isomorphisms.

Given such a category, set S = ⌃1S0. The unit isomorphism S ^ S ! S makes
S into a commutative ring spectrum. Then ✏ : ⌦1S ^⌦1S ! ⌦1S makes ⌦1S
into a commutative monoid. So its identity component is a generalized Eilenberg-
MacLane space. But this contradicts (A5), which says ⌦1S =⌦1⌃1S0 ' QS0. So
the conclusion is that (A1)–(A5) are mutually incompatible.
Symmetric and orthogonal spectra satisfy (A1)–(A4), but get around the problem

via the failure of (A5). Here ⌃1S0 is not Æbrant and so ⌦1⌃1S0 has the “wrong”
homotopy type; said di�erently, (A5) must be modiÆed to say that ⌦1F⌃1X 'QX ,
where F is a Æbrant-replacement functor.

The EKMM setup gets around this problem by having two sets of adjoint functors,
called here (⌃1S ,⌦1S ) and (⌃1,⌦1) (see Section 1.9 for more details). There is a
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natural transformation ⌃1S ! ⌃1 that is a weak equivalence on coÆbrant pointed
spaces, and there is its adjoint ⌦1 ! ⌦1S . The pair (⌃1S ,⌦1S ) is the one with
homotopical meaning (it turns out to be a Quillen pair, with the right model category
structures), whereas (⌃1,⌦1) is the one with the good monoidal properties. So ⌃1

satisÆes (A3) and (A4), but ⌦1⌃1 does not satisfy (A5); whereas ⌦1S ⌃1S satisÆes (A5),
but ⌃1S does not satisfy (A3) and (A4).
Returning to the simpler setting of symmetric spectra, replacing (A5) with its

derived version is not the end of the story. Even with this modiÆed (A5), Lewis’s
argument shows that if R is a Æbrant spectrum with a commutative and associative
product then ⌦1R (which is already appropriately derived) must be a generalized
Eilenberg-MacLane space. This is obviously a matter of concern, since we would like
spectra such as S , K , MO, and MU to have models which are commutative ring
spectra on the nose. That is not prohibited, but such models cannot also be Æbrant in
the usual model structure for symmetric (or orthogonal) spectra. The standard way
for dealing with this is to use a di�erent model structure called the positive model
category structure. We will discuss this brieØy in Section 1.10.5.

1.1.8 Organization of the paper

We assume a basic familiarity with model categories, as provided by sources like [16],
[23], [24], and [45]. See also Chapter ?? of this volume. SpeciÆcally, we assume the
reader is familiar with the model category axioms, cylinder and path objects, the
homotopy category, Quillen functors, derived functors, the small object argument,
simplicial model categories, and the notion of coÆbrant-generation.
We occasionally assume the reader has a passing acquaintance with the classical

aspects of spectra and their connection to (co)homology theories, as represented for
example in any of [1], [2, Part III], and [55].
We also assume the reader has a basic knowledge of closed symmetric monoidal

categories; MacLane’s book [36] is a good source. Finally, we use enriched categories
to a certain extent. Not much more is needed than the basic deÆnition and the notion
of enriched functor, which are essentially obvious. But consult [29] for any needed
background here.
With homotopy-theoretic machinery, there is the usual issue of whether to take

as foundation simplicial sets or topological spaces. For the most part we have tried
to present results in a way that applies to either situation, but this is not always
convenient. To avoid having to constantly work in two situations at once, we choose
topological spaces as our main framework. The reader who prefers to work simplicially
should be able to make the necessary modiÆcations to the exposition with little trouble.

1.1.9 Notation and terminology

When C is a category we write C(X,Y ) for HomC(X,Y ). If C is a category enriched
over some symmetric monoidal category V, we write C(X,Y ) for the corresponding
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V-mapping object. We write Top⇤ for the category of pointed topological spaces. We
Æx S1 = I /@I and deÆne Sn = S1 ^ (S1 ^ (S1 ^ (· · ·^ S1))).

1.1.10 Acknowledgments

The author would like to thank the editors for numerous useful comments, and Andrew
Blumberg in particular for assistance with some questions about EKMM spectra. The
author is especially grateful to Mike Mandell, who gave a “cursory” reading that
somehow produced several pages of valuable suggestions.

1.2 Stable model categories

A model category is called stable when the suspension functor is a self-equivalence
on the homotopy category. The homotopy categories of stable model categories enjoy
several nice properties: they are additive, triangulated, and the notions of homotopy
coÆber and Æber sequences are the same. These simply-stated facts take a nontrivial
amount of e�ort to set up and prove carefully. Most of Chapters 6 and 7 of [24] are
devoted to this. We aim to give a quick tour for those who are new to this machinery,
partly because the depth of the results in [24] make them a bit of a maze. We hope
the treatment here can serve as a guide through that material.

A category M is called pointed if it has an initial object, a terminal object, and the
two are isomorphic. Quillen [45, Chapter I.2] showed that if M is a pointed model
category then the homotopy category Ho(M) comes equipped with a special pair of
adjoint functors

⌃ : Ho(M)�Ho(M) : ⌦

called suspension and loop functors. If X is a coÆbrant object, factor X ! ⇤ as
X ⇢ CX

⇠�⇣ ⇤. Then ⌃X can be deÆned to be the pushout of ⇤  X ! CX .
Likewise, if Z is a Æbrant object then factor ⇤ ! Z as ⇤ ⇠⇢ PZ ⇣ Z and deÆne ⌦Z
as the pullback of ⇤ ! Z PZ . It is easy to show that these homotopy types do not
depend on the choice of CX or PZ , and moreover that these deÆnitions extend to
give the desired functors. (Note that “C” and “P” stand for “cone” and “path object”).
Let X be coÆbrant and consider the diagram

CX

'
✏✏

Xoooo // // CX

⇤ X // //oo CX.

Taking pushouts gives a map CX qX CX ! ⌃X , and the model category axioms
force this to be a weak equivalence (see [46, Corollary to Theorem B]). But collapsing
X gives CXqX CX! ⌃X_⌃X , and so we have constructed a map ⌃X! ⌃X_⌃X
in Ho(M). A little work shows that this makes ⌃X into a cogroup object in Ho(M),
and that ⌃2X is a cocommutative cogroup object. Similarly, when Y is Æbrant then
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⌦Y is a group object in Ho(M) and ⌦2Y is a commutative group object. It follows
that [⌃2X,Z] and [A,⌦2Y ] have natural structures of abelian groups, where from
now on we will write [�,�] for maps in Ho(M).

DeÆnition 1.2.1. A pointed model categoryM is called stable if the suspension functor
⌃ : Ho(M)!Ho(M) is an equivalence of categories.

The (⌃,⌦) adjunction shows that it is equivalent to require that⌦ be an equivalence.
Moreover, when M is stable the functors ⌃ and ⌦ will be inverses. The following is
an easy exercise:

Proposition 1.2.2. Let M be a pointed model category. The following conditions are
equivalent:

(a) M is stable
(b) For all objects X and Y the maps ⌃⌦X ! X and Y ! ⌦⌃Y are isomorphisms in

Ho(M).

If M is a stable model category then every object in Ho(M) is a double suspension
(and a double loop space), and so the hom sets are all abelian groups and composition
is additive in both variables. The homotopy category inherits coproducts and products
from M, so Ho(M) is additive. In particular, it follows formally that the canonical
map i : A_ B! A ⇥ B is an isomorphism in Ho(M). Let us recall the proof, since
it is brief. If jA : A! A_ B and ⇡A : A ⇥ B! A are the canonical inclusions and
projections, then jA⇡A + jB⇡B is a two-sided inverse to i .
When M is a pointed model category Quillen also showed that Ho(M) comes

equipped with special “triangles” called homotopy Æber and coÆber sequences. An
⌦-triangle is a diagram ⌦C! A! B! C in Ho(M) such that the composition of
any two maps is zero, and a ⌃-triangle is a diagram A! B! C ! ⌃A with the
same property. A map of ⌦-triangles is a commutative diagram

⌦C //

⌦h
✏✏

A //

f
✏✏

B //

g
✏✏

C

h
✏✏

⌦C 0 // A0 // B0 // C 0 ,

and an isomorphism of ⌦-triangles is a map where all the vertical maps are isomor-
phisms. We use similar notions for maps and isomorphisms of ⌃-triangles.

Exercise 1.2.3. Check that changing the signs of two maps in an ⌦-triangle (or ⌃-
triangle) produces an isomorphic triangle.

If p : X⇣ Y is a Æbration between Æbrant objects then there exists a lifting in the
square

⇤ //
✏✏

'
✏✏

X

✏✏✏✏
PY

�
==

// Y

and therefore an induced map ⌦Y ! F, where F is the Æber of X⇣ Y . We leave it
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as an exercise to check that a di�erent choice for � gives the same map ⌦Y ! F in
Ho(M). The ⌦-triangle ⌦Y ! F! X! Y is called the homotopy Æber sequence
corresponding to p. More generally, we make the following deÆnition:

DeÆnition 1.2.4. An ⌦-triangle is called a homotopy Æber sequence if it is isomor-
phic to the homotopy Æber sequence corresponding to some Æbration between Æbrant
objects p : X! Y .

Remark 1.2.5. Note that it is a common abuse of terminology to say things like
“F! X! Y is a homotopy Æber sequence”, leaving the map ⌦Y ! F as implicit.

We leave the reader to write down the dual notion of a homotopy coÆber sequence,
which yields a special class of ⌃-triangles.

Remark 1.2.6. In addition to the map ⌦F! Y we constructed above, one can show
that there is a map � : ⌦F⇥Y ! Y giving an action of ⌦F on Y in Ho(M). Our map
⌦F ! Y is the restriction of � along ⌦F ⇥ ⇤ ! ⌦F ⇥Y . The notion of “homotopy
Æber sequence” should really include this map � as part of the data. But when M

is stable ⌦F _ Y ! ⌦F ⇥ Y is an equivalence, and the restriction of � to the Y
summand is just the identity. So in this case there is no more information in � than
in our map ⌦F ! Y . We refer to [24, Chapter 6.3] or [45, Chapter I.3] for careful
studies of homotopy Æber and coÆber sequences in the unstable setting.

From now on assume that M is stable. The Ærst result about homotopy coÆber and
Æber sequences is the following:

Proposition 1.2.7. LetM be a stable model category and let T be any object.

(a) For any homotopy Æber sequence ⌦Y ! F! X! Y , the induced sequence of abelian
groups

[T ,⌦Y ]! [T ,F]! [T ,X]! [T ,Y ]

is exact at the two middle spots.
(b) For any homotopy coÆber sequence A! B! C! ⌃A, the induced sequence of abelian

groups

[⌃A,T ]! [C,T ]! [B,T ]! [A,T ]

is exact at the two middle spots.

If X
f�! Y

g�! Z
h�! ⌃X is a homotopy coÆber sequence then we get associated

maps ⌦Z
⌦h�!⌦⌃X � X and Y

g�! Z � ⌃⌦Z , where the two isomorphisms are the
unit and counit of the ⌃ �⌦ adjunction. One might expect the evident sequence
⌦Z ! X! Y ! ⌃⌦Z made from these maps to be a homotopy coÆber sequence,
but this is not correct—there is a sign issue. To get a homotopy coÆber sequence one
must negate one of the maps.

The following proposition gives several results of this form. Rather than give names
to all the maps, we adopt the convention that a minus sign by itself means “take the
negative of the evident map one would get by using ⌃, ⌦, and the adjunctions”.
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Proposition 1.2.8. LetM be a stable model category.

(a) Given a diagram in Ho(M) of the form

A //

✏✏

B //

✏✏

C // ⌃A

�
✏✏

⌦Z // X // Y // Z

in which the top row is a homotopy coÆber sequence and the bottom row is a homotopy
Æber sequence, there is a map C! Y making the diagram commute.

(b) Given a diagram in Ho(M) of the form

A //

✏✏

B // C //

✏✏

⌃A

�
✏✏

⌦Z // X // Y // Z

in which the top row is a homotopy coÆber sequence and the bottom row is a homotopy
Æber sequence, there is a map B! X making the diagram commute.

(c) Given a diagram in Ho(M) of the form

A //

✏✏

B //

✏✏

C // ⌃A

✏✏
A0 // B0 // C 0 // ⌃A0

in which both rows are homotopy coÆber sequences, there is a map C! C 0 making the
diagram commute. The dual statement for homotopy Æber sequences holds as well.

(d) If any of the following ⌃-triangles are homotopy coÆber sequences, than so are the others:
(i) X �! Y �! Z �! ⌃X , (ii) Y �! Z �! ⌃X

��! ⌃Y
(iii) ⌃X �! ⌃Y �! ⌃Z

��! ⌃2X , (iv) ⌦Z
��! X �! Y �! ⌃⌦Z .

(e) If any of the following ⌦-triangles are homotopy Æber sequences, than so are the others:
(i) ⌦Z �! X! Y �! Z , (ii) ⌦Y

��!⌦Z �! X �! Y ,
(iii) ⌦2Z

��!⌦X �!⌦Y �!⌦Z , (iv) ⌦⌃X
��! Y �! Z �! ⌃X .

The extensive list of results in the above proposition is kind of tedious, but having
this list around is very useful. It captures several of the main points from [24, Chapter 6].
A good (but challenging) exercise is to try to prove all of these facts from Ærst principles,
using [24] as a crutch when you get stuck. Note in particular that Proposition 1.2.8(a,b)
are [24, Proposition 6.3.7], and (c) is [24, Proposition 6.3.5]. The (i)() (ii) parts of
parts of (d,e) are [24, Proposition 6.3.4], and the equivalence with (iii) comes from
repeatedly applying (i)() (ii) and using Exercise 1.2.3. Finally, the equivalence with
(iv) is an easy exercise using the other parts.

Remark 1.2.9. Although it is necessary to get the signs right in coÆber or Æber se-
quences, in practice one almost always passes at some point to a long exact sequence
of homotopy classes. In these long exact sequences, one can indiscriminately alter
the signs on the maps without changing exactness. This is why one can sometimes
get away with a cavalier attitude about some of these sign issues.
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Part (c) of the following result is a lynchpin of the theory of stable model categories.
It is often phrased colloquially as saying that in a stable model category the classes of
homotopy Æber sequences and homotopy coÆber sequences are the same. We include
the proof here because of the key nature of the result, and because it takes a bit of
work to extract it from [24].

Proposition 1.2.10. LetM be a stable model category.

(a) If X! Y ! Z! ⌃X is a homotopy coÆber sequence and T is any object, then

[T ,X]! [T ,Y ]! [T ,Z]! [T ,⌃X]

is exact in the middle two spots.

(b) More generally, given a homotopy coÆber sequence X
f�! Y

g�! Z
h�! ⌃X and an object

T then

· · ·! [T ,⌦Y ]! [T ,⌦Z]! [T ,X]! [T ,Y ]! [T ,Z]! [T ,⌃X]! · · ·

is a long exact sequence, where each map is the obvious one obtained by applying ⌃ and
⌦ to f , g , or h and (if necessary) using the unit and counit of the adjunction.

(c) The triangle ⌦Z �! X �! Y �! Z is a homotopy Æber sequence if and only if
⌦Z �! X �! Y

��! ⌃⌦Z is a homotopy coÆber sequence, or equivalently if and only
if X �! Y �! Z �! ⌃X is a homotopy coÆber sequence.

Proof Denote the maps by X
f�! Y

g�! Z
h�! ⌃X . For (a), suppose u : T ! Y is

such that gu = ⇤ (we work always in the homotopy category). Rotate the coÆber
sequence and construct the following diagram:

Y
g // Z h // ⌃X

�⌃f // ⌃Y

T

u

OO

// ⇤ //

OO

⌃T id // ⌃T .

⌃u

OO

Both rows are homotopy coÆber sequences, so by Proposition 1.2.8(c) there is a Æll-in
v : ⌃T ! ⌃X . But ⌃ : [T ,X]! [⌃T ,⌃X] is an isomorphism, so let v̄ be a preimage
of v. Then f � v̄ = �u, so �v̄ is the desired lift of u in our sequence. Exactness at
[T ,Z] can be proven by rotating the homotopy coÆber sequence and then applying
what we just proved.

Part (b) is a direct consequence of (a) and stability. We can iteratively rotate the
homotopy coÆber sequence to get the Puppe sequence

X �! Y �! Z �! ⌃X
��! ⌃Y

��! ⌃Z
��! ⌃2X �! · · ·

(where each four terms are a homotopy coÆber sequence), and then apply [T ,�]. But
we can also apply [⌃T ,�] and then use both adjunction and stability to rewrite this as

[T ,⌦X]! [T ,⌦Y ]! [T ,⌦Z]! [T ,X]! · · ·

Similarly, we repeatedly extend the long exact sequence to the left by applying
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[⌃NT ,�] to our Puppe sequence. The signs can be neglected because leaving them
o� does not change exactness.
For (c) we just prove one direction as the other is similar. Assume given that

⌦Z �! X �! Y
��! ⌃⌦Z is a homotopy coÆber sequence. Let ⌦Z! F! Y ! Z

be a homotopy Æber sequence and consider the diagram

⌦Z //

id
✏✏

X // Y � //

id
✏✏

⌃⌦Z

�
✏✏

⌦Z // F // Y // Z.

By Proposition 1.2.8(b) there is a Æll-in u : X ! F. Now let T be any object and
consider the diagram below:

[T ,⌦Y ] //

id
✏✏

[T ,⌦Z]

id
✏✏

// [T ,X]

u⇤
✏✏

// [T ,Y ]

id
✏✏

� // [T ,⌃⌦Z]

� �
✏✏

[T ,⌦Y ] // [T ,⌦Z] // [T ,F] // [T ,Y ] // [T ,Z].

Here we have mostly just applied [T ,�] to our diagram in Ho(M), but we have used
(b) to extend the top sequence to the left one term. The top row is exact by (b), and the
bottom row is exact by Proposition 1.2.7(a). The Five Lemma then implies that u⇤ is an
isomorphism. Since this holds for all T we conclude that u itself was an isomorphism.
Finally, consider the commutative diagram

⌦Z //

id
✏✏

X //

u
✏✏

Y //

id
✏✏

Z

id
✏✏

⌦Z // F // Y // Z.

The bottom row was a homotopy Æber sequence by construction, and u is an isomor-
phism, so the top row is a homotopy Æber sequence as well.
For the last statement in (c), use Proposition 1.2.8(d).

We refer the reader to [57, Chapter 10.2] for the axioms of a triangulated category.
The culmination of the above line of work is the following:

Proposition 1.2.11. LetM be a stable model category. Then the suspension functor and the
class of homotopy coÆber sequences make Ho(M) into a triangulated category.

Proof Axiom TR1 is routine, and TR2 is Proposition 1.2.8(d). Axiom TR3 is Propo-
sition 1.2.8(c). So the only part that requires additional work is TR4, the Octahedral
Axiom. The main point of this Ænal axiom is to relate the homotopy coÆber sequence
for a composition f g to the homotopy coÆber sequences for f and g . The reader can
Ænd a proof of this axiom (in the unstable version) in [24, Proposition 6.3.6].
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1.3 Monoidal machinery

This section concerns categorical (and model categorical) material that is not speciÆc
to the theory of spectra, mostly centering around monoidal structures. We survey
some basic facts about monoidal categories and monoidal model categories, as well as
invertible objects.

1.3.1 Su�ciently-combinatorial model categories

A common issue in model categories is that one wants to take a model structure on a
given category M and produce an associated model structure on a related category
M0 . The Ærst example is where M0 is diagrams (of a Æxed shape) inside of M, but
we will see others as well. Except for a few special cases, there are almost no general
theorems along these lines. In practice one Ænds that some extra structure is required
on M or M0 or both. These structures typically take the form of sets of generating
maps where the domains and codomains satisfy certain smallness properties, whatever
one needs to run the small object argument.

The Ærst notion of this type is that of a coÆbrantly-generated model category, see [23].
This notion works well for some purposes, but is too weak for others. Later notions are
that of a cellular model category (also in [23]), and Je� Smith’s notion of a combinatorial
model category. A combinatorial model category is one that is coÆbrantly-generated
and where the underlying category is locally presentable; see [4] and [12] for written
accounts. The combinatorial setting is especially appealing, because here all objects
are small (with respect to large enough cardinals) and this property passes to most
associated categories.

Most model categories built in some way starting from sSet or Top are coÆbrantly-
generated, and the ones built from sSet are almost all combinatorial. Je� Smith
observed that one can make combinatorial forms of Top-based model categories by
replacing Top with the category of �-generated spaces.

In this paper we will sometimes want to phrase results in a way that applies both to
categories of spectra based on simplicial sets and those made from topologial spaces.
The safe thing is to always assume the categories in question are combinatorial, but
this does not apply to the category of compactly-generated spaces used in [18]. As
a Gordian-knot type solution to this problem, we will use the phrase su�ciently-
combinatorial as an intentionally imprecise stand-in for “assume enough hypotheses
so that the smallness conditions necessary for the arguments actually work”.

1.3.2 Monoids and models

Let (M,⌦, I ) be a monoidal category (I is the unit). Recall that a monoid in this
category is an object R together with unit map I ! R and multiplication R⌦R! R
satisying the evident axioms. The monoids in (Ab,⌦,Z) are usually called rings, and
in stable homotopy contexts the monoids are often called rings as well. For this reason
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we will use the word “ring” as a synonym for “monoid”, although the latter is really
the correct term.

If R is a ring in M, a left R-module is an object X together with a map R⌦X! X
satisfying the evident axioms. One similarly deÆnes right-modules and bimodules.
By convention, whenever we say “R-module” without further qualiÆcation then we
mean “left R-module”. Recall that if M is a right R-module and N is a left R-module
then one deÆnes M ⌦R N to be the coequalizer (if it exists) of the two action maps
M ⌦R⌦N ◆M ⌦N .

When M is a symmetric monoidal category we can talk about commutative rings in
M, and for such rings there is an evident way of turning any left module into a right
module, and vice versa. If R is a commutative ring then we deÆne an R-algebra to be
a ring map f : R!W such that R is central in W , meaning that the diagram

R⌦W

t

✏✏

f ⌦id // W ⌦W µ

** W

W ⌦R id⌦f // W ⌦W µ

44

is commutative. Observe that if M has coproducts and the tensor distributes over
them, then we have the expected “tensor algebra” functor T : R�Mod! R�Alg given
by T (V ) = Rq V q (V ⌦R V )q · · · with the evident multiplication. This gives an
adjoint pair T : R�Mod� R�Alg : U , where U is the forgetful functor.
We will be interested in the question of when certain structures on M pass to

the category of R-modules. For example, if M is complete then so is R�Mod. To
see this, let {M↵} be a diagram of R-modules and write lim↵M↵ for the limit in
M. The canonical map R ⌦ (lim↵M↵) ! lim↵(R ⌦M↵) makes lim↵M↵ into an
R-module, and one readily checks that this has the properties of the limit in the
category R�Mod. To say the same thing in slightly fancier language, the forgetful
functor U : R�Mod!M is right adjoint to the free R-module functor X 7! R⌦X
and therefore perserves all limits.
The situation for colimits is a little more challenging. Here the canonical map

colim↵(R⌦M↵)! R⌦ colim↵M↵ goes in the “wrong direction”, and so does not
give an R-module structure on colim↵M↵ . However, in many cases the functor R⌦(�)
is a left adjoint and hence preserves colimits; so in these cases the above map is an
isomorphism and everything works as before.

A symmetric monoidal category (M,⌦, I ) is called closed if there exists a cotensor
(or “internal hom”) functor F : Mop ⇥M!M together with natural adjunctions

M(A⌦B,C) �M(A,F(B,C)).

Note that this implies that (�)⌦ (�) commutes with colimits in both variables.

Proposition 1.3.1. Suppose (M,⌦, I ,F) is a closed symmetric monoidal category. Then both
R�Mod and R�Alg are complete and cocomplete.

Proof We have already discussed the situation for R�Mod. For R�Alg, limits are
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created by the forgetful functor U in the adjoint pair T : R�Mod � R�Alg : U .
Colimits in R�Alg are more complicated, but by [6, Proposition 4.3.6] the category is
cocomplete provided that the tensor functor T (�) preserves Æltered colimits. The latter
condition is immediate from the fact that ⌦ preserves colimits in each variable.

See Section ?? in Chapter ?? of this volume for a more detailed discussion of limits
and colimits in categories of operadic algebras.

We will next discuss the issue of compatibility between a monoidal structure and a
model structure.

DeÆnition 1.3.2. A monoidal model category is a model category M equipped with
a monoidal structure (⌦, I ) satisfying the following two axioms:

(1) [Pushout-Product Axiom] For any two coÆbrations f : A⇢ B and j : K⇢ L in M,
the induced map

f ⇤j : (A⌦L)qA⌦K (B⌦K) �! B⌦L

is a coÆbration. Moreover, f ⇤j is a weak equivalence if either f or j is a trivial
coÆbration.

(2) [Unit Axiom] There exists a coÆbrant replacement QI
⇠�! I having the property

that for all coÆbrant X the map QI ⌦X! I ⌦X is a weak equivalence.

The notion of monoidal model category was introduced in [24]. Note that the
Pushout-Product Axiom is analogous to one common form of Quillen’s SM7 axiom for
simplicial model categories; it is the standard axiom for compatibility of a tensor with
the model structure. In the presence of the Pushout-Product Axiom, the Unit Axiom
is equivalent to requiring that every coÆbrant replacement QI

⇠�! I has the stated
property. Note that this axiom is automatically satisÆed if the unit I is itself coÆbrant.
It is an easy exercise to verify that in a monoidal model category the derived functor
of ⌦ descends to give a monoidal structure on the homotopy category.
By a closed symmetric monoidal model category we simply mean a monoidal

model category where the underlying monoidal category is symmetric and closed. It is
an easy exercise in adjoint functors to check the following:

Proposition 1.3.3. Let M be a closed symmetric monoidal model category. If f : A⇢ B
and g : X⇣ Y are maps inM then the induced map

F(B,X)! F(A,X)⇥F(A,Y ) F(B,Y )

is a Æbration, and moreover it is a weak equivalence if either f or g is so.

We next consider when a model category structure on M induces an associated
model structure for R�Mod and for R�Alg. Suppose given a model category M

together with an adjoint pair L : M� N : U . In good cases one can put a model
category structure on N where a map f is a weak equivalence (respectively, Æbration)
if and only if Uf is a weak equivalence (respectively, Æbration). The coÆbrations are
forced to be the maps with the left lifting property with respect to the trivial Æbrations,
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but often this is about all one can say about them. When such a model structure on N

exists, one refers to it as the model structure created by the right adjoint U .
The main result on such structures is Kan’s Recognition Theorem [23, Theorem

11.3.2], which says that U creates a model structure on N if the following conditions
are satisÆed:

(1) M is coÆbrantly-generated;
(2) The images under L of the generating coÆbrations and trivial coÆbrations permit

the small object argument;
(3) If J denotes the set of generating trivial coÆbrations for M, then U takes all maps

in bLJ to weak equivalences, where bLJ is the class of maps obtained from L(J) by
taking cobase changes and transÆnite compositions.

Conditions (1) and (2) are technical conditions that in practice are always satisÆed in
the cases of interest; we will bundle them into the “su�ciently-combinatorial” adjective.
Condition (3) is where the real content is.
Let M be a monoidal model category and let R be a monoid in M. Then we have

adjoint functors

M
FR // R�Mod
U

oo

where U is the forgetful functor and FR(X) = R⌦X . If we are lucky, then U will create
a model category structure on R�Mod. Here are some general conditions where this
happens:

Proposition 1.3.4. LetM be a su�ciently-combinatorial monoidal model category.

(a) If R is coÆbrant inM, then R�Mod has the model structure created by U .
(b) Start with the collection of maps f ⌦ idR : R⌦A! R⌦B where f : A ⇠

⇢ B is a trivial
coÆbration. Let S be the collection of maps obtained from these using cobase change and
transÆnite composition. If every element of S is a weak equivalence, then R�Mod has
the model structure created by U .

Proof In (b), the stated hypothesis exactly veriÆes condition (3) from Kan’s Recog-
nition Theorem. For (a), the point is that when R is coÆbrant the functor R ⌦ (�)
preserves trivial coÆbrations by the Pushout-Product Axiom. Since trivial coÆbrations
are closed under cobase change and transÆnite composition, the condition from (b) is
automatically satisÆed.

Now assume that M is a closed symmetric monoidal model category. This allows
us to talk about commutative monoids in M. Let R be a commutative monoid and let
M and N be R-modules (we will identify left and right R-modules, as usual). DeÆne

M ⌦R N = coeq(M ⌦R⌦N ◆M ⌦N )

where the two maps in the coequalizer come from the R-module structure on M and
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N , respectively. Then ⌦R is a symmetric monoidal product on R�Mod with unit R.
Likewise, deÆne

FR(M,N ) = eq
⇣

F(M,N )◆ F(R⌦M,N )
⌘

where the two maps in the equalizer are the adjoints to the two evident maps
F(M,N )⌦R⌦M!N (twist-evaluate-multiply and multiply-evaluate). It follows by
quite general considerations that these give a closed symmetric monoidal structure on
R�Mod with unit R. We can hope that this makes R�Mod into a closed symmetric
monoidal model category.
Finally, let us turn to algebras. If R is a commutative monoid in M then we have

the adjoint functors TR : R�Mod� R�Alg : U . We can again hope that U creates a
model structure on R�Alg.
We now bundle all of these “hopes” into the following deÆnition:

DeÆnition 1.3.5. Let M be a closed symmetric monoidal model category. We say that
M satisÆes the Algebraic Creation Property if

(1) For every monoid R in M, the forgetful functor R�Mod ! M creates a model
structure on M.

(2) When R is a commutative monoid, then ⌦R and FR(�,�) make R�Mod into a
closed symmetric monoidal model category.

(3) When R is a commutative monoid, the forgetful functor R�Alg! R�Mod creates
a model structure on R�Alg.

There are essentially two separate circumstances where the Algebraic Creation
Property is known to hold. The Ærst is when all objects of M are Æbrant, and a few
other conditions are satisÆed—this kind of case was treated in [18, Chapter VII],
though some of the ideas go back as far as [45]. When it is not true that all objects of
M are Æbrant, the situation is more delicate; it was Ærst analyzed in [52]. The following
proposition, though somewhat awkward, brings together these di�erent threads.

Proposition 1.3.6. Let (M,⌦, I ) be a symmetric monoidal model category that is su�ciently-
combinatorial and consider the following hypotheses:

(1) For some coÆbrant-replacement QI
⇠�! I and any object X , the map QI ⌦X! I ⌦X is

a weak equivalence.
(2) All objects ofM are Æbrant, andM is a simplicial or topological model category.
(3) [The Monoid Axiom] For any trivial coÆbration A⇢ B and any object X , the map

A⌦X! B⌦X is a weak equivalence. Additionally, all maps obtained from the class

{A⌦X! B⌦X |A! B is a trivial coÆbration and X is any object}

by cobase change and transÆnite composition are also weak equivalences.

Assume that (1) holds and that either (2) or (3) holds. Then M satisÆes the Algebraic
Creation Property.
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Remark 1.3.7. Note that condition (1) is automatic if the unit is coÆbrant. In general
condition (1) seems much too strong, but it is not clear how to weaken it. Condition
(3) was isolated by Schwede-Shipley [52] and christened by them.

Proof of Proposition 1.3.6 Condition (2) implies that the appropriate model structures
are created on R�Mod and R�Alg; this is by [52, Lemma 2.3(2)] and the fact that
the simplicial (or topological) structure on M gives canonical path objects on both
R�Mod and R�Alg. See also [52, Remark 4.5].

Condition (3) also implies that the appropriate model structures are created on R�
Mod and R�Alg. For R�Mod this is automatic, as the condition of Proposition 1.3.4(b)
is a special case of (3). For R�Alg this is a little more di�cult, but was worked out in
[52, Theorem 4.1(3)].
It remains to prove that R�Mod is a monoidal model category. For the Pushout-

Product Axiom, as in [52, Theorem 4.1(2)] it su�ces to check this on the generating
coÆbrations and trivial coÆbrations of R�Mod. But these are of the form idR⌦f where
f is a generating coÆbration or trivial coÆbration of M, and the pushout-product is
readily analyzed. The necessary condition follows at once from the Pushout-Product
Axiom on M.

The trouble arises with the Unit Axiom for R�Mod. This was not dealt with in [52].
Let QI ! I be a coÆbrant-replacement in M. Hypothesis (1) implies that R⌦QI !
R⌦ I = R is a weak equivalence, and of course R⌦QI is coÆbrant in R�Mod. So we
must check that for every coÆbrant R-module M , the map (R⌦QI )⌦R M! R⌦R M
is a weak equivalence. Note that this is just the map QI ⌦M!M , and so hypothesis
(1) completes the veriÆcation.

If we have model categories on R�Mod and R�Alg, we should of course be
concerned with the extent to which these depend on the homotopy type of R. If
R! T is a map of monoids then there is an adjoint pair

T ⌦R (�) : R�Mod� T �Mod: V (1.3.3)

where here the right adjoint V is restriction of scalars, and this will be a Quillen pair
if the categories have the model structures created by U (because V will preserve both
Æbrations and trivial Æbrations).

Similarly, if R! T is a map of commutative monoids then T ⌦R (�) takes R-algebras
to T -algebras and we have a similar Quillen pair

T ⌦R (�) : R�Alg� T �Alg : V . (1.3.4)

In both cases, if R! T is a weak equivalence one would hope that the above adjoint
pairs are Quillen equivalences. Unfortunately, this does not work out for free and is
not known without various unsatisfying extra hypotheses. To sweep some of these
under the rug, we make the following deÆnition:

DeÆnition 1.3.8. Let M be a symmetric monoidal model category that satisÆes the
Algebraic Creation Property. Then M satisÆes the Algebraic Invariance Property if
for every weak equivalence of monoids R! T the Quillen pair of (1.3.3) is a Quillen
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equivalence, and if for every weak equivalence of commutative monoids R! T the
pair (1.3.4) is a Quillen equivalence.

The following result is basically [52, Theorems 4.3, 4.4]. It follows readily from
Quillen’s criterion for checking that an adjoint pair is a Quillen equivalence. The
proof is an easy exercise.

Proposition 1.3.9. LetM be a symmetric monoidal model category satisfying the Algebraic
Creation Property. Suppose further that

(1) For every monoid R and every coÆbrant R-moduleM , the functor (�)⌦RM preserves all
weak equivalences,

(2) Every coÆbration R! T in R�Alg is a coÆbration in R�Mod as well.

ThenM satisÆes the Algebraic Invariance Property.

The conditions in the above proposition seem like a lot to check, and in some sense
they are. But they have been veriÆed for all the modern model categories of spectra.
Condition (1) turns out to be surprisingly important, and deserves its own name:

DeÆnition 1.3.10. Let M be a symmetric monoidal model category satisyÆng the
Algebraic Creation Property. Say that M satisÆes the Strong Flatness Property if
for every monoid R in M and every coÆbrant R-module M , the functor (�) ⌦R M
preserves all weak equivalences of right R-modules.

While the Strong Flatness Property seems somewhat unnatural from a model cat-
egory theoretic perspective, it nevertheless is a crucial element of all the modern
model categories of spectra. Note that it automatically implies condition (1) of Proposi-
tion 1.3.6, using the Unit Axiom. One of the lessons of this whole section is that when
it comes to model structures on categories of modules and algebras in a monoidal
model category, none of the existing theory works out quite as naturally as one would
like.

Remark 1.3.11. The paper of Lewis-Mandell [32] also has some interesting things to
say about the Algebraic Invariance Property. DeÆne an object C of M to be semi-
coÆbrant if F(C,�) preserves Æbrations and trivial Æbrations (by adjointness this
is equivalent to saying that C ⌦ (�) preserves coÆbrations and trivial coÆbrations).
Every coÆbrant object is semi-coÆbrant, but the converse does not necessarily hold.
Lewis-Mandell prove that if one has a weak equivalence of monoids R! T , where
R and T are semi-coÆbrant, then the Quillen pair of (1.3.3) is a Quillen equivalence.
The paper [32] also has many other interesting results about the homotopy theory of
module categories.

Remark 1.3.12. If T is a monad on M then one can consider the category of T -
algebras M[T ] and again ask whether the forgetful functor U : M[T ]!M creates
a model structure on M[T ]. This question generalizes the speciÆc cases of R�Mod
and R�Alg we have considered in this section. While we will not address the general
version here, we refer the reader to [18, Chapter VII.4] for techniques that apply to
the case where M is a topological model category where all objects are Æbrant. The
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task of creating the model structures is essentially reduced to verifying two criteria,
embodied in the so-called “CoÆbration Hypothesis” [18, Remark IV.4.12].

See also Section ?? in Chapter ?? of this volume for a detailed discussion of model
structures on operadic algebras more generally.

1.3.5 Invertible objects

If one had to describe the idea of spectra in a single sentence, one approach is to say
that it is a modiÆcation of Top⇤ that makes the spheres invertible in the homotopy
category. So it is good to know a little about the general theory of invertible objects.
Let (C,⌦, I ) be a symmetric monoidal category. An object X in C is invertible if

the functor X⌦ (�) : C! C is an equivalence of categories. This is equivalent to saying

that there exists an object Y and an isomorphism ↵ : I
��! Y ⌦X , and here we say

that the pair (Y,↵) is an inverse for X . Note that ↵ is not unique, since given one
choice one can make others by precomposing with automorphisms of I . Likewise, Y
is unique up to isomorphism but not up to unique isomorphism. However, given an
inverse (Y,↵Y ) and another inverse (Z,↵Z ) it is easy to check that there is a unique
map f : Y ! Z making the diagram

I
↵Y //

↵Z ""

Y ⌦X
f ⌦id
✏✏

Z ⌦X
commute, and moreover f is an isomorphism.
Note that the tensor product of invertible objects is again invertible.
In a symmetric monoidal category, the endomorphisms of the unit always form a

commutative monoid: this is an easy exercise using that if f and g are any two maps
then f ⌦ g = (f ⌦ id)(id ⌦ g) = (id ⌦ g)(f ⌦ id). Given any object X in C, there is a
map of monoids �X : End(I )! End(X) that sends f : I ! I to the composite

X
��! I ⌦X f ⌦id�! I ⌦X ��! X.

When X is invertible, the map �X is an isomorphism. So in particular, the endomor-
phisms of an invertible object are always commutative. One checks that if (Y,↵) is an
inverse to X and f : X! X then ��1X (f ) is the composite

I ↵ // Y ⌦X id⌦f // Y ⌦X ↵�1 // I .

Now let X be any object in C. For n � 0 set X⌦n = X ⌦ (X ⌦ (X ⌦ · · ·⌦X)). Let
� 2 ⌃n and consider natural transformations

X1 ⌦ (X2 ⌦ (X3 ⌦ · · ·⌦Xn)) �! X��1(1) ⌦ (X��1(2) ⌦ (X��1(3) ⌦ · · ·⌦X��1(n)))

where the domain and codomain are considered as functors C⇥n ! C. MacLane’s
Coherence Theorem for symmetric monoidal categories says that all natural transfor-
mations of the above form, made from composites of associativity and commutativity
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isomorphisms, are identical; see [36, Theorem XI.1.1]. So we have a canonical such
transformation. Evaluating at the case where all Xi = X gives a map �⇤ : X⌦n! X⌦n,
and one readily checks that this gives a group homomorphism ⌃n ! Aut(X⌦n). If
X is invertible then so is X⌦n, which means Aut(X⌦n) is abelian and therefore this
map factors through the abelianization of ⌃n (which is Z/2). In particular, every
commutator in ⌃n acts as the identity on X⌦n. The Ærst case this is interesting is
n = 3, where the commutator subgroup is generated by the cyclic permutation (123).
Moreover, via block sum of permutations and conjugation this case generates the
relations for all higher n as well.

Proposition 1.3.13 (The cyclic permutation condition). If X is an invertible object in a
symmetric monoidal category then the composite

X ⌦ (X ⌦X) id⌦t // X ⌦ (X ⌦X) a // (X ⌦X)⌦X t⌦id // (X ⌦X)⌦X
a
✏✏

X ⌦ (X ⌦X)

must equal the identity, where all maps labelled a and t are associativity and commutativity
isomorphisms, respectively.

The cyclic permutation condition seems to have Ærst been identiÆed by Voevodsky,
when attempting to construct symmetric spectra in motivic homotopy theory. See [56,
Discussion preceding Theorem 4.3].

Invertible objects are, in particular, examples of dualizable objects. Self-maps of
dualizable objects have a trace. We will not recount the general theory here, but just
give a very streamlined version suitable for our present context. For the general theory,
see [30, Section III.1] or the survey in [11].

Assume X is invertible and (Y,↵) is a chosen inverse. Then there is a unique map
↵̂ : X ⌦Y ! I with the property that the composite

X � // X ⌦ I id⌦↵ // X ⌦ (Y ⌦X) a // (X ⌦Y )⌦X ↵̂⌦id // I ⌦X � // X

equals the identity. If f : X ! X then the trace of f is the element tr(f ) 2 End(I )
deÆned by the composite

I ↵ // Y ⌦X id⌦f // Y ⌦X t // X ⌦Y ↵̂ // I .

Given f : X! X we now have two ways to extract an element of End(I ): via ��1X (f )
and via tr(f ). These don’t always give the same element! The following results explain
the relation between them. They certainly must be classical, but see [11] for a written
account:

Proposition 1.3.14. Let X be an invertible object in a symmetric monoidal category, and let
⌧X = tr(idX ) 2 End(I ).

(a) ⌧X = ��1X⌦X (tX ) = tr(tX ) where tX : X ⌦X! X ⌦X is the twist.
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(b) ⌧2X = id .
(c) For any f : X! X , ��1X (f ) = ⌧X · tr(f ).
(d) If Y is another invertible object then ⌧X⌦Y = ⌧X⌧Y .

The elements ⌧X should be thought of as “generalized signs”. They appear as
control factors in commutation formulas involving X , in the same way that ±1 terms
appear in the standard formulas of topology.

Example 1.3.15. Fix a Æeld k and consider the category of Z-graded vector spaces,
equipped with the graded tensor product, standard associativity isomorphism, and
the twist isomorphism that incorporates the Koszul sign rule. Write k[n] for the
graded vector space consisting of a single k in degree n and zero in all other degrees.
We identify k with End(k[0]) by letting x 2 k correspond to multiplication-by-x.
The object k[1] is invertible. For an inverse we may choose k[�1] and the map

↵ : k[0]! k[�1] ⌦ k[1] sending 1 to 1 ⌦ 1. The map ↵̂ : k[1] ⌦ k[�1]! k[0] then
sends 1⌦1 to 1. If x 2 k and ⇢x : k[1]! k[1] is multiplication by x, we leave it as an
exercise to check that ��1X (⇢x) = x and tr(⇢x) = �x. In particular, ⌧k[1] = �1 here.

1.4 Spectra for Sulu and Chekov

For many applications one needs a model category of spectra but doesn’t care much
about the inner workings, other than a few basic properties. In the words of one
eloquent topologist, “Sometimes one just needs to drive the Enterprise, not necessarily
be Mr. Scott.” The goal of this section is to supply a list of properties that are shared
by most of the existing models, and to give some standard examples of how they can
be used. These examples were all originally worked out in [18].

In this section we assume the existence of a pointed category Spectra equipped
with a closed symmetric monoidal smash product ^ with unit S and cotensor F(�,�).
Additionally, we suppose given adjoint functors ⌃1 : Top⇤� Spectra : ⌦1, as well
as a stable model category structure on Spectra. We assume the following properties:

1. ⌃1 : Top⇤� Spectra : ⌦1 is a Quillen pair.
2. The smash product makes Spectra into a monoidal model category. So we have

(a) the pushout-product axiom: given coÆbrations f : A⇢ B and g : C⇢ D, the
induced map

f ⇤g : (A^D)qA^C (B^C)! B^D

is a coÆbration, and additionally it is a weak equivalence if either f or g is so. And
(b): for every coÆbrant object X and every coÆbrant replacement QS

⇠�! S , the
induced map QS ^X! S ^X is a weak equivalence.

3. There exists a weak equivalence ✏ : ⌃1S0! S and a natural transformation

⌘ : ⌃1(X ^Y )! ⌃1X ^⌃1Y
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that is oplax monoidal: this says that the evident associativity and unital squares
commute. Additionally, ⌘ is a weak equivalence when X and Y are coÆbrant.

4. (Spectra,^) satisÆes the Algebraic Creation and Invariance Properties (see DeÆni-
tions 1.3.5 and 1.3.8).

5. (Spectra,^) satisÆes the Strong Flatness Condition of DeÆnition 1.3.10. In particular,
for any coÆbrant spectrum A and any weak equivalence of spectra X ! Y , the
induced map A^X! A^Y is a weak equivalence.

6. There is an equivalence of triangulated categories between Ho(Spectra) and the
homotopy category of BousÆeld-Friedlander spectra that carries the spectra ⌃1(Sn)
to the standard n-sphere.

7. For any directed system X0 ! X1 ! X2 ! · · · in Spectra and any n � 0, the
canonical map

colimk[⌃1(Sn),Xk]! [⌃1(Sn),hocolimk Xk]

is an isomorphism, and similarly sequences indexed by other transÆnite ordinals.

All of these properties are satisÆed by the categories of symmetric spectra, or-
thogonal spectra, and W-spaces (all to be deÆned in subsequent sections). Note that
�-spaces are eliminated from the discussion because they are not a stable model
category, but except for this (and the related property (6)) all of the other properties
are satisÆed. Note also that (7) is actually a consequence of (6) (using the smallness of
spheres in Top), but is included separately here for emphasis.

Remark 1.4.1. EKMM spectra are a special case as they do NOT satisfy property
(3), although they satisfy all of the others. Instead, in EKMM spectra there are two
pairs of adjoints functors called (⌃1S ,⌦1S ) and (⌃1,⌦1) together with natural maps
⌃1S X ! ⌃1X which are weak equivalences whenever X is coÆbrant as a pointed
space. The pair (⌃1S ,⌦1S ) satisÆes (1), and the pair (⌃1,⌦1) satisÆes (3). But if
we use the pair (⌃1S ,⌦1S ) for (1)–(7) then we can replace (3) above with (3’) stating
that there is a contractible space of choices for an ⌘, giving an oplax symmetric
monoidal map in the homotopy category. Keeping this small variation in mind, all of
the arguments in the remainder of this section apply to EKMM spectra as well. (It is
somewhat unfortunate that the EKMM (⌃1,⌦1) notation conØicts with what we use
above, but we will just live with this).

1.4.1 Homotopy groups of spectra

Write S0 = ⌃1(S0) and S1 = ⌃1(S1). For p > 1 deÆne the stable sphere Sp recursively
by Sp = S1 ^ Sp�1, so that

Sp = S1 ^ (S1 ^ (S1 ^ · · · )))

Note that S1 is coÆbrant by property (1), and then Sp is coÆbrant by the Pushout-
Product Axiom. Note also that using property (3) there is a canonical weak equivalence
⌘ : ⌃1(Sp)! Sp . Some authors prefer to adopt ⌃1(Sp) as the deÆnition of the stable
sphere, but ⌘ shows that for homotopical purposes this is equivalent to our approach.
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Since ⌃ is an autoequivalence of the homotopy category, there exists a desuspension
of S0. Let S�1 be any chosen coÆbrant spectrum for which there exists an isomorphism
↵ : S ! S�1 ^ S1 in Ho(Spectra). For p � 1 inductively deÆne S�p = S�1 ^ S1�p .
Let ↵̂ : S1 ^ S�1! S be the dual map to ↵ in Ho(Spectra) as deÆned after Proposi-
tion 1.3.13.
Under these deÆnitions, there are canonical isomorphisms in Ho(Spectra) of the

form

� : Sk ^ Sl ! Sk+l

for any k, l 2 Z. If k, l > 0 then we deÆne � as a composite of associativity isomor-
phisms, and MacLane’s Coherence Theorem for monoidal categories says that all
choices for such associativity isomorphisms lead to the same map � . Similar remarks
apply when k, l < 0. When k = 0 we use

S0 ^ Sl ✏^id�! S ^ Sl � Sl

which uses property (3) and also property (2) to know that the Ærst map is an isomor-
phism. Similar for l = 0. When k < 0 and l > 0 we use associativity isomorphisms
together with repeated uses of the map ↵�1 and the unit map. Again, one can prove
that the exact choice of maps here does not e�ect the Ænal composite. Finally, when
k > 0 and l < 0 we do the same thing but using ↵̂ instead of ↵.

It is a theorem that these speciÆed isomorphisms are compatible, in the sense that
the evident pentagon containing Sk ^ (Sl ^ Sn) and Sk+l+n is commutative in the
homotopy category. More generally, any two composites derived from these canonical
maps (but having the same domain and range) are identical (again, in the homotopy
category). See [11] for a complete discussion.
Here is why this tedious discussion is actually important. For any spectrum X we

write ⇡p(X) for Ho(Spectra)(Sp,X). If X is a ring spectrum and f : Sp ! X and
g : Sq! X we may form the composite

Sp+q ��! Sp ^ Sq f ^g�! X ^X µ�! X

and this determines a pairing ⇡p(X)⌦⇡q(X)! ⇡p+q(X). Also, the composite map

S0 ✏�! S! X determines a special element 1 2 ⇡0(X).

Lemma 1.4.2. When X is a ring spectrum, ⇡⇤(X) is a ring. If M is a left X-module then
⇡⇤(M) is a left ⇡⇤(X)-module.

Proof Left to the reader as an exercise, but note that the properties of the canonical
maps � are important here. See [11] for details and generalizations.

1.4.2 Homotopy groups of tensors and cotensors

Let R be a commutative ring spectrum and let M and N be R-modules. We will
construct a spectral sequence of the form

Tor⇡⇤Rp,q (⇡⇤M,⇡⇤N )) ⇡p+q(M ^L
R N )
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where ^L
R denotes the derived version of ^R. When M = R^X and N = R^Y this

gives the Künneth spectral sequence Tor⇡⇤R(R⇤(X),R⇤(Y ))) R⇤(X ^Y ).
The following argument can be made almost entirely in the homotopy category

Ho(R�Mod), using only the triangulated structure. However, note that the model
structure on R�Mod is key to setting up this homotopy category to begin with. The
model structure also plays a small role in the following lemma:

Lemma 1.4.3. Let R be a commutative ring spectrum and let M be an R-module. Then
there exists an R-module F of the form F =

W

i R^ Sni together with a map F !M in
Ho(R�Mod) that is surjective on homotopy groups.

Proof Let M !Mf ib be a Æbrant-replacement in R�Mod. Choose a set of ⇡⇤R-
module generators ↵i 2 ⇡⇤(M), together with representative maps ↵i : Sni !Mf ib

in Spectra. We then get R-module maps R ^ Sni ! Mf ib using the adjoint pair
Spectra� R�Mod. Let F =

W

i R^ Sni and let ↵ : F!Mf ib be the evident map.
Since ↵ is a map of R-modules, ⇡⇤↵ is a map of ⇡⇤R-modules. So to see that ⇡⇤↵

is surjective we only need argue that each ↵i is in the image. This follows from the
following commutative diagram:

R^ Sni
id^↵i // R^Mf ib µ // Mf ib

S ^ Sni
id^↵i //

OO

S ^Mf ib

OO

Sni

�

OO

↵i // Mf ib.

�

OO

Let R be a commutative ring spectrum and let M be an R-module. The following
argument takes place entirely in the category Ho(R�Mod). Set X0 = M . Using
Lemma 1.4.3 choose an R-module F0 =

W

i R ^ Sni and a map F0 ! X0 that is a
surjection on ⇡⇤(�). Let X1! F0! X0 be a homotopy Æber sequence in Ho(R�Mod)
(see the discussion of Æber and coÆber sequences in Section 1.2, and in particular
Remark 1.2.5).
Repeat this process inductively to likewise construct homotopy Æber sequences

Xn! Fn�1! Xn�1 where Fn�1 is a wedge of suspensions of R and Fn�1! Xn�1 is
surjective on homotopy groups. One way to present all this information is via the
diagram

· · · // F2 //

    

F1 //

    

F0

    
X2

>>

>>

X1

>>

>>

M

where here double-headed arrows represent maps that induce surjections on homotopy
groups and tailed arrows represent maps that induce injections on homotopy groups.
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Observe that the induced sequence ⇡⇤(F•) is a free ⇡⇤R-resolution of ⇡⇤M . (Note:
there are some subtleties in justifying this last claim, which for the moment we leave
for the reader to try to uncover. But see Section 1.4.4 below.)
Our diagram can also be restructured so that it is a diagram of homotopy Æber

sequences. Here we rotate the Æber sequence Xn! Fn�1! Xn�1 to instead become
Xn�1! ⌃Xn! ⌃Fn�1 and suspend n� 1 times to get the diagram

⌃F0 ⌃2F1

M X0 // ⌃X1

OO

// ⌃2X2 //

OO

· · ·

where every “layer” is a homotopy Æber sequence (note that we are being very cavalier
about signs, but that will be okay for our application). Now apply the derived functor
(�)^L

RN . This is still taking place entirely within Ho(R�Mod), but note that we know
this derived functor exists because of model category machinery. For convenience we
will drop the derived “L” in all smash products and write our new tower of homotopy
Æber sequences as

⌃F0 ^R N ⌃2F1 ^R N

M ^R N X0 ^R N // ⌃X1 ^R N

OO

// ⌃2X2 ^R N //

OO

· · ·

Every layer of this tower induces a long exact sequence in homotopy groups, because
homotopy Æber sequences of R-modules are also homotopy Æber sequences of spectra
(the forgetful functor from R-modules to spectra is a right adjoint and preserves all
weak equivalences, so is its own right derived functor). These long exact sequences
braid together to give a spectral sequence in the usual way, taking the form

E1
a,b = ⇡a(⌃b+1Fb ^R N )) ⇡a�1(M ^R N ), dr : Er

a,b! Er
a�1,b�r

(and recall once more that all smash products are derived).
Finally, observe that Fb^RN =

W

i (R^Sni )^RN =
W

i S
ni ^N , and so ⇡⇤(Fb^RN )

is a direct sum of shifted copies of ⇡⇤(N ). Said in the most canonical way possible,
though, for any R-module W we have a natural map

⇡⇤(W )⌦⇡⇤(R) ⇡⇤(N )! ⇡⇤(W ^R N )

and when W is R^ Sn or a wedge of such things this map is an isomorphism. This
identiÆes the E1-term of our spectral sequence as ⇡⇤(F•)⌦⇡⇤(R) ⇡⇤(N ), and a little
thought shows the d1 maps are the boundary maps in this complex. So the E2-term
is Tor⇡⇤R(⇡⇤M,⇡⇤N ), as desired. SpeciÆcally, E2

a,b = Tor⇡⇤Rb,a�b�1(⇡⇤M,⇡⇤N ) and this
converges to ⇡a�1(M ^R N ). Recoordinatizing the spectral sequence by setting b = p
and a� b � 1 = q yields the following:

Theorem 1.4.4. Let R be a commutative ring spectrum and let M and N be R-modules.
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Then there is a spectral sequence

E2
p,q = Tor⇡⇤Rp,q (⇡⇤M,⇡⇤N )) ⇡p+q(M ^L

R N )

with di�erentials of the form dr : Er
p,q! Er

p�r,q+r�1.

The construction of a spectral sequence for ⇡⇤FR(M,N ) is entirely similar. Start
with the same tower of homotopy Æber sequences and apply FR(�,N ). The key part
of the calculation is that

FR(R^ Sn,N ) ' F(Sn,N ) ' ⌃�nN

and so ⇡⇤(FR(Fq,N )) � Hom⇡⇤R(⇡⇤Fq,⇡⇤N ). We leave the reader to work out the
rest of the details for the following:

Theorem 1.4.5. Let R be a commutative ring spectrum and let M and N be R-modules.
Write RF(M,N ) for the derived cotensor. Then there is a spectral sequence

E
p,q
2 = Extp,q⇡⇤R

(⇡⇤M,⇡⇤N )) ⇡�(p+q)RFR(M,N )

with di�erentials of the form dr : E
p,q
r ! E

p+r,q�r+1
r .

For more detail about the above two spectral sequences, see [18, Chapter IV.4].

1.4.3 Constructing Morava K-theory

For each prime p the nth Morava K-theory spectrum is a certain ring spectrum
K(n) having the property that ⇡⇤K(n) = Z/p[v±1n ] where |vn| = 2(pn � 1). In addition
to those properties it can be characterized by the existence of a map MU ! K(n)
having a prescribed behavior on homotopy groups (where MU is the usual complex
cobordism spectrum). As a demonstration of the model-category-theoretic tools we
have been describing, we show how they lead to a construction of the spectrum K(n)
starting with MU .
We start with the assumption that there is a commutative ring spectrum MU in

our category Spectra and a ring isomorphism ⇡⇤(MU ) � Z[x1,x2, . . .] with |xi | = 2i
for all i . Let MU ! X be a Æbrant-replacement in the category of MU-modules, and
recall that this implies X is Æbrant in Spectra.
Fix a prime p. Since ⇡0(MU ) = Z and X is Æbrant, there exists a map S0 ! X

that represents the element p 2 ⇡0(MU ). Then we can consider the composite

MU ^ S0!MU ^X µ�! X , and let MU1 be the homotopy coÆber in the category
MU �Mod. Note that this is also a homotopy coÆber in Spectra, since homotopy
coÆber and Æber sequences are the same (Proposition 1.2.10(c)) and the forgetful
functor from MU-modules to spectra preserves the latter (being its own right derived
functor). The long exact sequence on homotopy groups immediately shows that
⇡⇤(MU1) = Z/p[x1,x2, . . .]. (Note: There is a subtlety here! For now we leave the
reader to try to uncover it, but see Section 1.4.4 below).

Now let MU1! X1 be a Æbrant-replacement of MU-modules, and choose a map
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S2! X1 that represents x1. Let MU2 be the homotopy coÆber in MU�Mod of the
composite MU ^ S2!MU ^X1! X1, and verify that ⇡⇤(MU2) = Z/p[x2,x3, . . .].
The only thing we are ever using is that we are quotienting by an element xi

which is a nonzerodivisor on homotopy groups, so we can continue to do this for
whichever xi we choose. Fix an n and successively kill o� all the xi except for xpn�1.
For convenience set r = pn � 1. This produces a sequence in Ho(MU�Mod) of the
form

MU =MU0!MU1!MU2! · · ·!MUr�1!MUr+1! · · ·

Lift this to a directed system in MU�Mod, and let Z be the homotopy colimit in
MU�Mod. Then Z sits in a homotopy coÆber sequence

W

nMUn!
W

nMUn! Z
where the Ærst map is the di�erence between the identity and the shift map. This is
also a homotopy Æber sequence (Proposition 1.2.10(c)), and that property is preserved
after applying the forgetful functor to Spectra. So Z is also the homotopy colimit
of the MUn in Spectra (rather than MU�Mod). We then know by property (7) that
⇡⇤(Z) = colimn⇡⇤(MUn), and so ⇡⇤(Z) � Z/p[xr ].

Now consider the composite map Z ^S2r �! Z ^MU
t�!MU ^Z µ�! Z . This is

a map of left MU-modules, using that MU is commutative. Applying (�)^S�2r gives
a map of MU-modules Z! Z ^ S�2r . On homotopy groups this is multiplication by
xr . Consider the sequence in Ho(MU�Mod)

Z! Z ^ S�2r ! Z ^ S�2r ^ S�2r ! · · ·

then lift it to MU�Mod, and let W be the homotopy colimit. It follows again from
property (7) that ⇡⇤(W ) = Z/p[x±1r ].
In this way we have constructed an MU-module spectrum W whose homotopy

groups make it look like W is the nth Morava K-theory spectrum. The construction
has also produced a map MU !W which does the right thing on homotopy groups,
so W really is Morava K-theory.
Note that we have not constructed W as a ring spectrum, only as an MU-module

spectrum. In [18, Chapters V.3 and V.4 (see especially Theorem V.4.1)] it is explained
how to construct a product W ^W !W making W into a homotopy ring spectrum,
but this is much weaker than what is desired. To construct W as a ring spectrum one
seems to need the full force of A1-obstruction theory, which we will not recount here.

Remark 1.4.6 (Historical note). All of the arguments throughout this section Ærst
appeared in [18]. They needed very little of the inner workings of EKMM-spectra,
however, and as we have seen here work in any of the modern model categories of
spectra.

1.4.4 Loose ends

In the course of the argument from Section 1.4.3 we had a homotopy coÆber sequence
MU ^ S0 !MU !MU1 and wanted to compute the homotopy groups of MU1
using the long exact sequence. This required us to know ⇡⇤(MU ^ S0)—but how
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exactly do we know these groups? Recall that S0! S is a coÆbrant-replacement, and
so it is tempting to use property (2) to say that MU ^S0!MU ^S =MU is a weak
equivalence. But that works only if MU is coÆbrant as a spectrum, which we have not
assumed!
To try to get around this issue, let ÉMU

⇠�⇣ MU be a coÆbrant-replacement in
Spectra. We certainly know ÉMU ^ S0 'ÉMU 'MU by property (2), so we know the
homotopy groups of ÉMU ^ S0. We could go back to the beginning and try to do the
entire construction with ÉMU replacing MU , except we do not know that ÉMU is a
ring spectrum. The lifting diagram

ÉMU

'
✏✏✏✏

ÉMU ^ÉMU

33

// MU ^MU // MU

produces a multiplication, but in general it will only be associative up to homotopy
rather than on the nose. If ÉMU is only a homotopy ring spectrum we do not have a
good homotopy theory of ÉMU-modules, so we are again defeated.
What saves us here is the amazing property (5). Since S0 is coÆbrant this property

guarantees that ÉMU ^ S0 ! MU ^ S0 is still an equivalence, and so we have
MU ^ S0 'ÉMU ^ S0 'ÉMU 'MU . This analysis is actually needed at each stage
of the construction, since at the nth stage we need to know the homotopy groups
of MU ^ S2n and it is only property (5) that allows these to be identiÆed with the
homotopy groups of MU ^L S2n (which we know are just a shifted version of the
homotopy groups of MU ).
There was a similar subtle issue that came up in Section 1.4.2. There we had

a spectrum X =
W

↵(R^ Sn↵ ) and wanted to conclude that ⇡⇤(X) �
L

↵ ⇡⇤�n↵ (R).
Given coÆbrant spectra E↵ , general model category considerations show that

W

↵ E↵
is the homotopy colimit of a directed system E↵1 ! E↵1 _E↵2 ! · · · (possibly indexed
by an ordinal larger than !). So property (7) implies that ⇡⇤(

W

↵ E↵) �
L

↵ ⇡⇤(E↵).
The spectra R^Sn↵ need not be coÆbrant, but if R̃! R is a coÆbrant replacement in
Spectra then we can write

X =
_

↵

(R^ Sn↵ ) � R^
✓

_

↵

Sn↵
◆

' R̃^
✓

_

↵

Sn↵
◆

�
_

↵

(R̃^ Sn↵ )

where we have used property (5) for the weak equivalence in the middle. Since the
spectra R̃^ Sn↵ are coÆbrant, we can use the previously mentioned result to see that
⇡⇤(X) is as desired.

We do not mean to imply that these are the most important applications of property
(5), but they are good examples of how that property can unexpectedly come to the
rescue at key moments.
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1.5 Diagram categories and spectra

With the exception of the EKMM model, all of the common model categories of spectra
are built on the foundation of diagram categories. It is perhaps not immediately
apparent from the classical deÆnition, but a spectrum is a kind of diagram. The
goal of this section is to survey the general theory of model structures on diagram
categories, and then to explain how spectra can be regarded as diagrams. This whole
“diagrammatic” perspective is one of the main points of [38].

1.5.1 Model category structures on diagram categories

Let M be a category and let I be a small category. We write MI for the category whose
objects are the functors X : I !M and whose morphisms are natural transformations.
Such functors are also called I-diagrams in M. When M has a notion of weak
equivalence then MI can be equipped with the objectwise weak equivalences,
namely the maps X! Y such that Xi ! Yi is a weak equivalence for every object i
in I . These are sometimes called levelwise weak equivalences as well.

If M has a model structure then one might expect there to be an associated model
structure on MI built around the objectwise weak equivalences, but unfortunately this
doesn’t seem to work out unless one assumes some extra hypotheses on M.

Theorem 1.5.1. LetM be a model category and let I be a small category.

(a) If M is coÆbrantly-generated then there is a model category structure on MI in which
a map f : X! Y is a weak equivalence (resp., Æbration) if and only if fi : Xi ! Yi is
a weak equivalence (resp., Æbration) for all objects i in I . This is called the projective
model structure on MI . The coÆbrations are forced to be those maps satisfying the
left-lifting-property with respect to the trivial Æbrations.

(b) If M is combinatorial (coÆbrantly-generated and locally presentable) then there is a
model category structure onMI in which a map f : X! Y is a weak equivalence (resp.,
coÆbration) if and only if fi : Xi ! Yi is a weak equivalence (resp., coÆbration) for all
objects i in I . This is called the injective model structure on MI . The Æbrations are
forced to be those maps satisfying the right-lifting-property with respect to the trivial
coÆbrations.

Both parts (a) and (b) were proven by Heller [21, Theorem II.4.5] in the case
M = sSet, with (b) also following from work of Jardine in this case [27]. For part (a)
in the above generality, see [23, Theorem 11.6.1]. Part (b) in the above generality is
due to Je� Smith; it follows from [4, Theorem 1.7 and Propositions 1.15, 1.18], using the
forgetful functor MI !Q

i2I M as the “detection functor” for Beke’s Proposition 1.18.
Let us say a little about how Theorem 1.5.1 is proven, since the main idea is easy

and also useful in a variety of situations. For each i in I there are adjoint functors

Fi : M�MI : Evi

where the right adjoint Evi is the “evaluation at i” functor. The diagram FiX is the
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free diagram generated by starting with an X at spot i . One readily checks that for
each X in M and j in I ,

(FiX)(j) =
a

I(i,j)

X.

That is, (FiX)(j) is a coproduct of copies of X indexed by I(i, j). For T a set it is
convenient to write T �X for the coproduct of copies of X generated by T , so that
(FiX)(j) = I(i, j)�X .
Start with sets {f↵ : A↵⇢ B↵} and {f̃↵ : Ã↵

⇠
⇢ B̃↵} of generating coÆbrations and

trivial coÆbrations for M. The collections I = {Fi (f↵)}i,↵ and J = {Fi (f̃↵)}i,↵ are
potential sets of generating coÆbrations and trivial coÆbrations for MI : the maps with
the right-lifting-property with respect to I and J are clearly the objectwise trivial
Æbrations and the objectwise Æbrations, respectively. The only thing nontrivial in
setting up the projective model category structure is the factorization axiom, and this
can be proven by the small object argument—it works in MI as long it worked in M,
which is the coÆbrant-generation assumption. This proves (a).

Another way of describing the proof of (a) is to package all of the pairs (Fi ,Evi )
into a single adjoint pair

F :
Y

i2I
M�MI : Ev .

Kan’s Recognition Theorem [23, Theorem 11.3.2] immediately yields that the right
adjoint Ev creates the projective model structure on MI .
The proof of (b) works a little di�erently; it is a direct descendant of the classical

proof that categories of sheaves have enough injectives. Here one Æxes a large cardinal
� (depending on I and M) and looks at a skeletal set of all objectwise coÆbrations
(or objectwise trivial coÆbrations) where the domain and codomain are both �-small.
The �-small conditions guarantee that the isomorphism classes of such things actually
form a set and not a proper class. By choosing � large enough, one can show that
these give generating coÆbrations (resp., trivial coÆbrations) for the desired injective
model structure.

Remark 1.5.2. The coÆbrations in the projective model structure on MI are often
called “projective coÆbrations”. For general I they are hard to identify explicitly, but
for some special classes of indexing categories I this can be done. For example, one
such class is the “upwards-directed Reedy categories”. These are categories where
the objects can be assigned a degree in N in such a way that all non-identity maps
raise degree. Maps of diagrams over such categories can be built inductively, degree
by degree, and this is what makes it easy to identify the projective coÆbrations. See
Corollary 1.5.8 below for an example, or [10, Section 14] for a detailed discussion.

Remark 1.5.3 (Comparing diagram categories). Suppose f : I ! J is a functor be-
tween small categories. Then there is an induced “restriction” map f⇤ : MJ ! MI ,
obtained by precomposition with f . The functor f⇤ has a left adjoint f ⇤ given by left
Kan extension, and the pair (f ⇤, f⇤) is a Quillen pair between the projective model
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structures (since f⇤ clearly preserves objectwise Æbrations and trivial Æbrations). We
will often make use of this Quillen pair.
We will not have need of the following, but note that f⇤ also has a right adjoint f!

given by right Kan extension, and the pair (f⇤, f!) is a Quillen pair when MI and MJ

are given the injective model structures.

Remark 1.5.4. We have assumed I is a small category, otherwise one runs into set-
theoretic di�culties in constructing MI . However, in applications one often wants
to apply these ideas to non-small categories as well. One typical approach is to Æx
a Grothendieck universe and to redeÆne “small” to mean “small with respect to the
universe”. Then one can still construct MI for non-small I , but at the expense of
passing to a larger universe.
If I0 ,! I is a small skeletal subcategory then the adjoint functors from Re-

mark 1.5.3 give an equivalence between MI and MI0 . So one could instead just use
MI0 as a substitute for MI and thereby avoid passing to the larger universe.
In practice a combination of these two ideas is often used, mostly without expla-

nation. When I has a small skeletal subcategory one can stay on Ærm ground by using
MI0 , and common practice is to regard this as allowing one to use MI with impunity.

1.5.2 Enriched diagrams

If I is a category enriched over sSet and M is a simplicial model category, then one
can look at enriched diagrams X : I !M. These are collections of objects Xi for i 2 I
together with maps of simplicial sets I(i, j)!M(Xi,Xj ) that satisfy the evident unital
and associativity axioms. Here we will write MI for the category of enriched diagrams,
with the comment that in practice this abuse of notation never leads to any confusion.
The analog of Theorem 1.5.1 still holds for enriched diagrams, and the proof is the
same. The only modiÆcation is to realize that here one has (FiX)(j) = I(i, j) ⌦X ,
where the simplicial tensor now replaces the previous � symbol.

Similar results hold where M is a model category enriched over Top (satisfying the
analog of SM7) and I is a Top-enriched category, or the same with Top replaced with
Top⇤. This will be the case that is most relevant to spectra.

1.5.3 Spectra and diagram categories

Classically, a spectrum is a sequence of pointed spaces Xn together with maps
⌃Xn ! Xn+1. Such an object does not manifestly suggest a diagram, but it turns
out that spectra are precisely certain enriched diagrams. The key here is to realize
that a map ⌃Xn! Xn+1 corresponds under the usual adjunctions to a pointed map
S1! Top⇤(Xn,Xn+1) (where Top⇤(A,B) denotes the space of maps from A to B).
DeÆne a Top⇤-enriched category ⇥ where the objects are non-negative integers n,

and where

⇥(k,n) =

8

>

>

<

>

>

:

⇤ if k > n

(S1)^(n�k) if k  n.
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The pairings ⇥(l,n)^⇥(k, l)! ⇥(k,n) are the canonical maps obtained from the
associativity isomorphisms for the smash product in Top⇤, and the identity maps in
⇥(n,n) are given by the non-basepoint in S0. It is routine to check that this really is
a Top⇤-enriched category. Here is a depiction of the Ærst few levels of ⇥:

0 S1
//

S1^S1

??

S1^(S1^S1)

FF1

S1^S1

��S1
// 2 S1

// 3 // · · ·

At this point it is an exercise to check that a classical spectrum is the same as an
enriched diagram ⇥! Top⇤.

1.5.4 The level model structure on classical spectra

We are going to construct this model category in two ways: by brute force (as is
normally done) and then by the diagrammatic perspective. The two ways are really
the same, but it is informative to see that Ærsthand.

So for the moment let us pause and start from scratch. A spectrum X is a sequence
of pointed spaces Xn for n � 0 together with structure maps �n : ⌃Xn ! Xn+1. A
map of spectra f : X! Y is a collection of pointed maps fn : Xn! Yn such that the
diagrams

⌃Xn
�X //

fn
✏✏

Xn+1

fn+1
✏✏

⌃Yn
�Y // Yn+1

all commute. Let SpN denote the resulting category.
Let Evn : SpN! Top⇤ be the functor X 7! Xn. This has a left adjoint which takes

a pointed space W , puts it in level n, and generates a spectrum from that information
in the freest way possible. SpeciÆcally, one readily checks that

(FnW )k =

8

>

>

<

>

>

:

⇤ if k < n,

⌃k�nW if k � n

with the evident structure maps.

Exercise 1.5.5. Check that Evn also has a right adjoint In : Top⇤ ! SpN, that sends a
pointed space W to the spectrum with

(InW )k =

8

>

>

<

>

>

:

⌦n�kW if k  n,

⇤ if k > n



40 Stable categories and spectra via model categories

(again with the evident structure maps).

As another exercise with these adjoints, observe that there are canonical maps
Fn+1(⌃W )! FnW and InW ! In�1(⌦W ). The Ærst is an isomorphism in degrees
larger than n, and the second is an isomorphism in degrees lower than n.

Theorem 1.5.6. There exists a model category structure on SpN in which a map f : X! Y
is a weak equivalence (resp., Æbration) if and only if fn : Xn! Yn is a weak equivalence
(resp., Æbration) for all n. This is called the projective, level model structure on SpN.
Additionally, both the adjoint pairs

Top⇤
Fn // SpN

Evn
oo and SpN

Evn //
Top⇤

In
oo

are Quillen pairs (with the left adjoint always drawn on top, going left to right).

Proof We explain the proof in two ways. The Ærst is to take the generating coÆbrations
and trivial coÆbrations in Top⇤ and apply all the functors Fn to them, thereby getting
generating sets for SpN. The model structure then basically constructs itself, using
the small object argument. The second way, which says the same thing, is to use the
observation that SpN is secretly the category Top⇥⇤ and then use Theorem 1.5.1(a).

For the statements about Quillen pairs, the right adjoints Evn and In clearly preserve
Æbrations and trivial Æbrations.

Remark 1.5.7. Using Theorem 1.5.1(b) there is also a “level, injective” model category
structure on SpN, which is sometimes useful. However, the model structures derived
from the projective one end up having better properties when we get to symmetric
and orthogonal spectra. See Remark 1.7.8(2).

The category ⇥ acts like an upwards-directed Reedy category, in the sense that all
the interesting maps raise degree. As in Remark 1.5.2, this is a case where we can
explicitly identify the projective coÆbrations:

Corollary 1.5.8. A map of spectra f : X! Y is a coÆbration in the projective, level model
structure if and only if the evident maps

Xnq⌃Xn�1 ⌃Yn�1 �! Yn

are coÆbrations for all n, where by convention we set X�1 = Y�1 = ⇤.

Sketch of proof. Let W
⇠�⇣ Z be a levelwise trivial Æbration of spectra, and suppose

given a square

X //

✏✏

W

✏✏
Y // Z.

We will attempt to produce a lifting Y !W by constructing it inductively on the
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levels. At level 0 we have the diagram

X0 //

✏✏

W0

'
✏✏✏✏

Y0 // Z0

and so get a lifting if X0! Y0 is a coÆbration. At level 1 we have a similar diagram,
but we can’t just take any lifting—because we need the map Y1!W1 to be compatible
with the already-chosen Y0!W0. This compatibility is encoded by the diagram

X1q⌃X0 (⌃Y0)

✏✏

// W1

'
✏✏✏✏

Y1 // Z1

and we will get a lift provided the vertical map on the left is a coÆbration. Continuing
inductively in the evident manner, one sees that a map satisfying the conditions
started in the corollary is a coÆbration in the projective level model structure.
For the converse, assume X ! Y is a projective coÆbration and suppose given a

lifting diagram

Xnq⌃Xn�1 ⌃Yn�1
//

✏✏

W

'
✏✏✏✏

Yn // Z.

This adjoints over to a diagram

X //

✏✏

InW

✏✏
Y // InZ ⇥In�1(⌦Z) In�1(⌦W )

and the right vertical map is a levelwise trivial Æbration by inspection, so there is a
lifting. Now adjoint back.

Remark 1.5.9. The level model structure is a rather formal thing, not capturing any
kind of stabilization phenomenon. It treats spectra as mere diagrams, and not as true
stable objects. For example, a spectrum X and its truncation {⇤,X1,X2, . . .} should
represent the same “stable object”, but the level model structure sees them as di�er-
ent. The suspension functor on SpN just applies suspension objectwise, and clearly
this is not an equivalence on the homotopy category level—so we do not have a sta-
ble model category. In Section 1.6 we will see how to impose relations into the level
model structure that incorporate stability.
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1.5.5 The level model structure on coordinate-free spectra

This is an easy modiÆcation of what we have already done. Fix a May universe U, as
in Section 1.1.5. For V ✓W ✓ U, write W �V for the orthogonal complement of V
in W . DeÆne a coordinate-free spectrum to be an assignment V 7! XV for V ✓ U

a Ænite-dimensional subspace, together with maps SW�V ^XV ! XW for every pair
V ✓W , subject to the evident unital and associativity conditions. Write SpU for the
evident category of coordinate-free spectra on U.
DeÆne a Top⇤-enriched category ⇥U whose objects are the Ænite-dimensional

subspaces of U. Let the morphisms be given by

⇥U(V ,W ) =

8

>

>

<

>

>

:

SW�V if V ✓W,

⇤ otherwise.

For V ✓W ✓ Z , the evident isomorphism SZ�W ^SW�V ! SZ�V gives a composition
map for ⇥ that is readily checked to be unital and associative. Observe that an enriched
diagram ⇥U! Top⇤ is the same as a coordinate-free spectrum deÆned on U.
The projective model structure on the diagram category Top⇥U⇤ is called the

projective, level model structure on SpU.
To compare this construction to classical spectra, pick an orthonormal basis e1, e2, . . .

for U and let Rn be the span of the Ærst n basis elements. Consider the particular
linear map R! Rn+1 �Rn sending 1 to en+1, so that compactifying gives us a pre-
ferred homeomorphism S1 � S (Rn+1�Rn). If X is a coordinate-free spectrum then the
assignment [n] 7! XRn gives a classical spectrum. Let U : SpU ! SpN denote this
forgetful functor. From the diagrammatic viewpoint we have described an embedding
j : ⇥ ,!⇥U and U is just restriction along this embedding. Category theory automat-
ically tells us that U has a left adjoint G: it sends a spectrum X : ⇥ ! Top⇤ to its
left Kan extension along j . Note that (GX)V is an appropriate (enriched) colimit over
the category of all Rn contained in V . One easy but important fact is that the map
Xn! (UGX)n is an isomorphism, for all n.
It is formal that the pair G : SpN� SpU : U is a Quillen pair, since U preserves

Æbrations and trivial Æbrations. It is of course not a Quillen equivalence, because we
are using the levelwise model structures. This will change when we pass to the stable
model structures in the next section.

Remark 1.5.10 (Change of Universe). Suppose that U and U0 are two May universes,
and f : U! U0 is an isometry (which will necessarily be injective, but possibly not
surjective). Then there is an enriched functor ⇥U! ⇥U0 that on objects behaves as
V 7! f (V ) and on maps as SW�V 7! Sf (W )�f (V ) (induced by f ). We therefore get

a restriction functor f⇤ : Top
⇥0U⇤ ! Top⇥U⇤ and its left adjoint f ⇤ as in Remark 1.5.3.

Again, these are not Quillen equivalences—but their analogs will become Quillen
equivalences after stabilization.
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1.6 Localization and the stable model structures on spectra

In this section we will see how to modify the level model structure on spectra in a
way that captures true stable phenomena. This uses a technique that is now called
BousÆeld localization, although it of course did not have this name when it Ærst
appeared back in [7]. Here we review the relevant model category theoretic techniques
and then we repeat the work of [7] to obtain the stable structure on spectra. This
works in both the classical and coordinate-free contexts. See also Chapter ?? of this
volume for more on BousÆeld localization.

1.6.1 Homotopy mapping spaces

Let M be a model category. To any two objects X and Y in M one can associate
a homotopy mapping space M(X,Y ), also sometimes called a homotopy function
complex. This is a simplicial set, well deÆned up to weak homotopy equivalence, which
only depends on the weak homotopy types of X and Y . Given maps X ! X 0 and
Y ! Y 0 one can construct models for these function complexes that come with maps
M(X 0 ,Y )!M(X,Y ) and M(X,Y )!M(X,Y 0).
Here are four standard ways to construct models of M(X,Y ):

(1) Replace X by a cosimplicial resolution QX⇤, choose a Æbrant-replacement Y ! RY ,
and use the simplicial set M(QX⇤,RY ) obtained by applying M(�,RY ) to QX⇤.

(2) Choose a coÆbrant-replacement QX ! X , a simplicial resolution Y ! RY⇤, and
use the simplicial set M(QX,RY⇤).

(3) Use nerves of categories of zig-zags from X to Y to form the so-called hammock
localization space LHM(X,Y ).

(4) When M is a simplicial model category, choose a coÆbrant-replacement QX! X
and a Æbrant-replacment Y ! RY and use the simplicial mapping space from QX
to RY .

See [23] and [24] for more on (1) and (2), and [15] or Chapter ?? of this volume for (3).
But all the model categories considered in this paper are simplicial, so feel free to focus
on (4). Depending on the context one might also write Map(X,Y ) or hMap(X,Y ) as
a synonym for M(X,Y ).

1.6.2 Localization of model categories

Given a model category M and a collection of maps T in M, one sometimes wants
to construct a new model category structure that is obtained from M by adjoining
the maps in T to the already-existing weak equivalences. This will likely force even
more maps to be weak equivalences (at the very least one has to close up the set
under two-out-of-three), and at least one of the notions of coÆbration/Æbration will
have to change as well. The main technique for accomplishing this is called BousÆeld
localization.
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DeÆnition 1.6.1. Let M be a model category and let T be a set of maps in M.

(a) An object X in M is T -local if for all f : A! B in T , the induced map M(B,X)!
M(A,X) is a weak equivalence.

(b) A map f : A! B is a T -local equivalence if for all T -local objects X , the induced
map M(B,X)!M(A,X) is a weak equivalence.

BrieØy, an object X is T -local if it “sees” all the maps in T as weak equivalences,
where “see” amounts to looking at things from the perspective of M(�,X). Likewise,
the T -local equivalences are the maps that are seen as weak equivalences by all the
T -local objects. So the T -local equivalences include all of T , but will usually include
other maps as well.

The following result is due to Hirschhorn [23] in the cellular case, and to Je� Smith
in the combinatorial case (see [4] for a written account):

Theorem 1.6.2. Let M be a cellular or combinatorial model category, and let T be a set
of maps in M. Then there exists a new model structure T �1M on the same underlying
category asM such that

(i) the coÆbrations in T �1M are the same as the coÆbrations inM,
(ii) the weak equivalences in T �1M are the T -local equivalences,
(iii) the Æbrations are the maps with the right-lifting-property with respect to coÆbrations that

are T -local equivalences.

Moreover, an object X is Æbrant in T �1M if and only if X is Æbrant in M and X is
T -local. And Ænally, if X and Y are T -local then a map f : X! Y is a weak equivalence
in T �1M if and only if it is a weak equivalence inM.

When it exists, the model category T �1M is called the left BousÆeld localization
of M at the set T . A Æbrant-replacement functor in T �1M is called a T -localization
functor.

Remark 1.6.3. It is useful to know a bit about how Theorem 1.6.2 is proven and
about the construction of the localization functor. For each map in T choose a model
f : A⇢ B that is a coÆbration. For each simplicial horn j : ⇤n,k ,! �n consider the
box product j⇤f , which is the map

j⇤f : (⇤n,k ⌦B)q(⇤n,k⌦A) (�
n ⌦A) �! �n ⌦B.

Here the tensor refers to the simplicial tensor if M is a simplicial model category,
or more generally it refers to a version built using cosimplicial frames (see [23] for
details). Formally add these maps j⇤f (for every j and f ) to the set of generating
trivial coÆbrations of M, and then repeat the small object argument using this new
set to get the required factorization. In particular, the localization functor is obtained
as a transÆnite composition of cobase changes of the generating trivial coÆbrations
in M together with the maps j⇤f .
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1.6.3 Bousfield-Friedlander spectra

If X is a spectrum and n � 0, deÆne the n-truncation ⌧�nX to be the spectrum
{⇤,⇤, . . . ,⇤,Xn,Xn+1, . . .}. There is a natural map ⌧�nX! X . Our basic goal will be to
localize the level, projective model structure on spectra at the class {⌧�nX! X |n,X}.
However, this class is not a set and so the Ærst task is to pare it down somewhat. To
this end, deÆne

T =
n

⌧�(n+1)Fn(Sk)! Fn(Sk)
�

�

�n,k � 0
o

.

Observe that ⌧�(n+1)Fn(X) is canonically isomorphic to Fn+1(⌃X), so we can also
describe the set as

T =
n

Fn+1(Sk+1)! Fn(Sk)
�

�

�n,k � 0
o

where the map in question is adjoint to the identity Sk+1! Evn+1(FnSk).

DeÆnition 1.6.4. The stable projective model structure on SpN is the localization
of the level projective model structure at the set T.

Let us analyze the T-local objects. Here the relevant observation is that

SpN
⇣

Fn(Sk),X
⌘

' Top⇤(S
k,Xn)

by adjoint functors. If f denotes our map Fn+1(Sk+1)! Fn(Sk) then on mapping
spaces this is

SpN
⇣

FnSk,X
⌘

//

'
✏✏

SpN
⇣

Fn+1Sk+1,X
⌘

'
✏✏

Top⇤(S
k,Xn) // Top⇤(S

k+1,Xn+1) Top⇤(S
k,⌦Xn+1)

and one checks that the lower horizontal composite is induced by the structure map
Xn!⌦Xn+1. So a spectrum X is T-local precisely when it is an ⌦-spectrum.

Remark 1.6.5. Note that we only needed k = 0 to make this argument. So the maps
in T where k > 0 represent redundant information, and we could throw them out of
T and still get the same localization.

For the following result, recall that if X is a spectrum and n 2 Z then

⇡n(X) = colimk ⇡n+k(Xk)

where the maps in the colimit system are induced by the structure maps of X .

Proposition 1.6.6. In the stable projective model structure on SpN one has that

(a) The Æbrant objects are the levelwise-Æbrant ⌦-spectra, and
(b) A map f : X ! Y is a weak equivalence if and only if it induces isomorphisms

⇡n(X)! ⇡n(Y ) for all n 2 Z.

Note that the levelwise-Æbrant condition is vacuous if we are deÆning spectra in
terms of topological spaces, but not if we are doing so in terms of simplicial sets.
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Proof We have already proven (a). For (b), Ærst note that for a map of ⌦-spectra the
three notions of level weak equivalence, ⇡⇤-isomorphism, and stable equivalence all
coincide: level equivalence = stable equivalence by the last line of Theorem 1.6.2, and
level equivalence = ⇡⇤-isomorphism by inspection.
Next consider the map fn,k : Fn+1(Sk+1)! Fn(Sk). This map is an isomorphism

in levels n + 1 and higher, so this same property passes to any cobase change. In
particular, any cobase change of an fn,k is a ⇡⇤-isomorphism. Similarly, for any set
of horns j : ⇤p,r ,! �p the box product j⇤fn,k is also an isomorphism in levels n+1
and higher. It follows that any map obtained from these box products by cobase
changes and transÆnite compositions is a ⇡⇤-isomorphism. In particular, the Æbrant
replacement functors X ! RX in the stable projective structure are made this way
(see Remark 1.6.3) and are therefore ⇡⇤-isomorphisms.

Finally, suppose given a map of spectra g : X! Y and consider the square

X //

g
✏✏

RX

Rg
✏✏

Y // RY.

The horizontal maps are both stable equivalences and ⇡⇤-isomorphisms. So g is a
stable equivalence (resp., ⇡⇤-isomorphism) if and only if Rg is so. But RX and RY are
⌦-spectra, so the conditions of Rg being a stable equivalence or ⇡⇤-isomorphism are
equivalent; hence, the same must hold for g .

In general, it can be very hard to give a nice description for the Æbrations in a
BousÆeld localization. In the present case one can actually do it, though. Note that
since there are more trivial coÆbrations in T�1M than in M, there will be fewer
Æbrations.

Proposition 1.6.7. For a spectrum X , let QX = hocolimn⌦
nXn. Then a map of spectra

X! Y is a Æbration in the projective stable structure on SpN if and only if it is a levelwise
Æbration and for every n � 0 the square

Xn
//

✏✏

QX

✏✏
Yn // QY

is homotopy Cartesian.

Proof See [7]. Note that in [7] the projective stable category is not constructed by
BousÆeld localization, it is just constructed directly by brute force. But their coÆbrations
and weak equivalences match the ones in our structure, and Æbrations are always
determined by the trivial coÆbrations, so the two structures are in fact the same.
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1.6.4 The coordinate-free setting

Recall the coordinate-free setting of Section 1.5.5. Here we localize at the maps
FW (SW�V ^ Sk)! FV (Sk) for all k and all pairs V ✓W ✓ U. The functor G from
Section 1.5.5 sends the maps in T to these kinds of maps, so by general localization
theory the adjoint pair (G,U ) descends to give Quillen functors between the resulting
stable model categories:

G : SpN
stable� SpUstable : U.

By the same arguments that we have seen for SpN, the stable equivalences in SpU are
all ⇡⇤-isomorphisms. Since X!UGX is a levelwise isomorphism (see Section 1.5.5),
it follows at once that the above pair is a Quillen equivalence.

We leave the reader to think about change of universe in this setting, building o� of
Remark 1.5.10.

1.7 Symmetric spectra

The deÆnitions and basic results about symmetric spectra are very elegant and
beautiful. Understanding the details of what is going on beneath the surface is a
di�erent matter. Our approach here will be to quickly survey the basic theory from
[26] and then go back and work on some “motivation” afterwards.

DeÆnition 1.7.1. A symmetric sequence in a category C is a collection of objects Xn
together with group homomorphisms ⌃n! Aut(Xn), for each n � 0.

It will be convenient to have a more diagrammatic way of phrasing this deÆnition.
Let ⌃I be the subcategory of Set consisting of the objects n = {1,2, . . . ,n} for n � 0
(with 0 = ;) together with all automorphisms. A symmetric sequence in C is simply a
functor X : ⌃I ! C. As usual, we write C⌃I for the category of all such functors.
Now assume that (C,⌦, I ,F) is closed symmetric monoidal and also cocomplete.

Given symmetric sequences X and Y , deÆne a new symmetric sequence X ⌦Y by

(X ⌦Y )n =
a

p+q=n
(⌃n)+ �⌃p⇥⌃q

(Xp ⌦Xq).

To explain the � notation, regard any group G as a groupoid with one object and G
as its endomorphism group. If H  G and W is an object with a left H-action, then
G�H W is the left Kan extension in the diagram

H //
✏✏

✏✏

C.

G

>>

Equivalently, one can write

G�H W = coeq
✓

a

G⇥H
W ◆

a

G

W
◆
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where the top map sends the copy of W indexed by (g,h) to the copy of W indexed
by g via left-multiplication-by-h, and the bottom maps sends the copy of W indexed
by (g,h) to the copy of W indexed by gh via the identity. The action of G on

`

GW
by permutation of the factors descends to give a left action of G on G�H W .
There is a self-evident, though tedious-to-write-down, associativity isomorphism

X ⌦ (Y ⌦ Z) � (X ⌦ Y ) ⌦ Z . DeÆne the twist isomorphism ⌧X,Y : X ⌦ Y ! Y ⌦ X
on level n to be the coproduct of maps ⌃n �⌃a⇥⌃b

(Xa ⌦Yb)! ⌃n �⌃b⇥⌃a
(Yb ⌦Xa)

(where a + b = n) sending [↵,Xa ⌦ Yb] to [↵⇢b,a,Yb ⌦ Xa] via the twist map from
C, where ⇢b,a 2 ⌃n is the evident (b,a)-shu�e. It is a good exercise to check that
without ⇢b,a in the formula this is not a well-deÆned map, as it does not exhibit the
required ⌃a ⇥⌃b-equivariance; indeed, check that one needs to include a permutation
⇢ having the property that (�a|�b) � ⇢ = ⇢ � (�b |�a) for every �a 2 ⌃a, �b 2 ⌃b . The
only permutation that does the job is ⇢ = ⇢b,a. (For a general schema that helps
one quickly determine the correct permutation to use in situations like this, see also
Remark 1.7.9).

When C is complete one can also deÆne a cotensor X,Y 7! F(X,Y ) for symmetric
sequences. Before giving the deÆnition, let us record the basic property it should have:

Lemma 1.7.2. Let X , Y , and Z be symmetric sequences in C. There are natural bijections
between the following three sets:

(1) C⌃I (X ⌦Y,Z)
(2) Collections of ⌃p ⇥⌃q-equivariant maps Xp ⌦Yq! Zp+q for all p,q � 0.
(3) C⌃I (X,F(Y,Z)).

Part (2) and (3) of the above lemma lead one directly to the deÆnition of the cotensor.
For X and Y in C⌃I deÆne F(X,Y ) by

F(X,Y )n =
Y

q

F(Xq,Yn+q)
⌃q

where the ⌃q action is as follows. If ↵ 2 ⌃q then we have maps ↵X : Xq ! Xq and
(idn|↵)Y : Yn+q ! Yn+q where (idn|↵) 2 ⌃n+q is the map that permutes the last q
elements according to ↵. Then ↵ acts on F(Xq,Yn+q) via the composite

F(Xq,Yn+q)
((idn |↵)Y )⇤�! F(Xq,Yn+q)

(↵�1X )⇤
�! F(Xq,Yn+q).

This gives an action of ⌃q , and F(Xq,Yn+q)
⌃q is the Æxed object (the limit of the

corresponding functor ⌃q! C). The action of ⌃n on Yn+q coming from permutation
of the Ærst block of n elements descends to an action of ⌃n on F(Xq,Yn+q)

⌃q .
The following is a routine exercise:

Proposition 1.7.3. With the above associativity and twist isomorphisms, the tensor product
on C⌃I is closed symmetric monoidal with unit I = {I ,;,;, . . .} and cotensor F(�,�).

Now Æx any object X in C. Recall from Section 1.3.5 that X⌦n is deÆned inductively
by X⌦n = X ⌦X⌦(n�1), and that there is a natural left action of ⌃n on X⌦n. DeÆne X
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to be the symmetric sequence Xn = X⌦n, and let I! X be the unique map that is the
identity in level 0.
The associativity maps give natural isomorphisms µa,b : Xa ⌦Xb ! Xa+b . We use

these to deÆne a pairing X⌦X! X that on level n is the coproduct of maps

⌃n �⌃a⇥⌃b
(X⌦a ⌦X⌦b)! X⌦(a+b)

which on the summand [↵,X⌦a ⌦X⌦b] equals ↵ �µa,b . One readily checks that this is
well-deÆned and makes X into a commutative monoid. The category of left X-modules
then inherits a closed symmetric monoidal structure as in Section 1.3.2, where for
example the tensor is (�)⌦X (�).
DeÆnition 1.7.4. A symmetric X-spectrum is a left X-module.

Unwinding the deÆnitions, a left X-module M is a sequence of objects Mn in C
together with an action of ⌃n on Mn and structure maps

↵p,q : X⌦p ⌦Mq!Mp+q

that are ⌃p ⇥⌃q-equivariant. The unital condition says that ↵0,q is the identity, and
associativity says that for p = a + b one has ↵p,q = ↵a,b+q � (id ⌦ ↵b,q); that is, the
diagram

X⌦a ⌦ (X⌦b ⌦Mq)
id⌦↵b,q //

�
✏✏

X⌦a ⌦Mb+q
↵a,b+q // Ma+b+q

(X⌦a ⌦X⌦b)⌦Mq
� // X⌦(a+b) ⌦Mq

↵p,q
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is commutative. In particular, this means that the maps ↵p,q with p > 1 can be built
up from the ↵1,⇤ maps.

So at the end of the day, a symmetric X-spectrum is a collection of objects Mn in C
equipped with a left ⌃n-action and structure maps ↵ : X ⌦Mn!Mn+1 having the
property that the iterated structure maps

X⌦p ⌦Mn!Mn+p

are ⌃p ⇥⌃n-equivariant, for all n,p � 0. Here “iterated structure map” means an
evident composition of associativity maps with the structure maps ↵.

1.7.1 The model category of symmetric spectra

We now specialize to the case where C is Top⇤ and X = S1. The spectrum X =
{S0,S1,S2, . . .} is called the sphere spectrum and denoted simply by S . So symmetric
spectra are just left S-modules. Write Sp⌃ for the category of symmetric spectra.
The evaluation map Evn : Sp⌃! Top⇤ has a left adjoint Fn given by

(FnX)k =

8

>

>

<

>

>

:

⇤ if k < n,

⌃k �⌃k�n (S
k�n ^X) if k � n
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where in the second line ⌃k�n sits in ⌃k as permutations of the front (k � n)-block.
Note that there are canonical maps

Fn+1(S1 ^X)! Fn(X)

that are equal to the identity in level n + 1. (Warning: Unlike the case of BousÆeld-
Friedlander spectra, these maps are not isomorphisms in degrees larger than n+1.
See the discussion below for an example).

Proposition 1.7.5. There is a model category structure on Sp⌃ where the weak equivalences
and Æbrations are objectwise. This is called the level, projective model structure.

Proof One can do this directly using the functors Fn and Kan’s Recognition Theorem,
just as we did for BousÆeld-Friedlander spectra. Alternatively, one can realize that
symmetric spectra are just certain enriched functors and use Theorem 1.5.1(a). See
Section 1.7.4 below for more on this perspective.

DeÆnition 1.7.6. The projective stable model structure on Sp⌃ is the left Bous-
Æeld localization of the projective level model category structure at the set of maps
{Fn+1(S1 ^ Sk)! Fn(Sk) |n,k � 0}.

Say that a symmetric spectrum is an ⌦-spectrum if its underlying classical spectrum
is an ⌦-spectrum. Here is the main foundational result about symmetric spectra,
pulling together various statements from [26]:

Theorem 1.7.7.

(a) The projective stable model structure on Sp⌃ is a stable, closed symmetric monoidal model
category satisfying the Monoid Axiom as well as the Algebraic Creation and Invariance
Properties.

(b) The Æbrant objects are the objectwise-Æbrant ⌦-spectra.
(c) The forgetful functor U : Sp⌃ ! SpN has a left adjoint G, and the adjoint pair

G : SpN� Sp⌃ : U is a Quillen equivalence between the projective stable model struc-
tures.

Remark 1.7.8.

(1) Part (b) is automatic from the way we choose the maps to localize, just as for
BousÆeld-Friedlander spectra.

(2) In (a) it su�ces to verify the Pushout-Product Axiom for box products of generating
coÆbrations and trivial coÆbrations. This is where it is Ænally important that we
started with the projective level structure and not the injective level structure. In
the former, the generating maps are well-understood and it is easy to analyze their
box products. In the latter, there are far too many coÆbrations and in fact the
Pushout-Product Axiom does not hold.

(3) The Quillen equivalence in part (c) is not unexpected, but it is not as easy as one
might think. The left adjoint just comes as in Remark 1.5.3, and the fact that it is a
Quillen pair is easy. But the equivalence part takes a bit of work. See Section 1.10.3
for further discussion.
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(4) The precise references for the di�erent parts of Theorem 1.7.7 are as follows:
monoidal model category [26, 5.3.8], monoid axiom [26, 5.4.1], Algebraic Creation
Property [26, 5.4.2 and 5.4.3], Algebraic Invariance Property [26, 5.4.5], Strong
Flatness Property [26, 5.4.4], Quillen equivalence with SpN [26, 4.2.5].

The derived functors of the Quillen equivalence from Theorem 1.7.7(c) give an
equivalence of categories

Ho(SpN)

LG
**
Ho(Sp⌃).

RU

hh

A common misconception is to confuse RU and U . That is, if E is a symmetric
spectrum then it is tempting to believe that the image of E in Ho(SpN) is represented
by the underlying classical spectrum UE. This is false in general—an example is
E = F1(S1), discussed below. Two other related issues are these:

(1) The functor U does not preserve all stable weak equivalences.
(2) If X is a symmetric spectrum then deÆne

⇡naive
n (X) = ⇡n(UX) = colimk ⇡n+k(Xk).

It is not true that all stable weak equivalences induce isomorphisms on ⇡naive
⇤ (�).

In particular, the groups ⇡naive
⇤ (X) are not guaranteed to be the “correct” homotopy

groups unless X is Æbrant.

One source of confusion here is that ⇡naive
⇤ (X) sometimes are the correct homotopy

groups even when X is not Æbrant. The paper [49] gives a detailed discussion of which
spectra X are well-behaved in this regard.

The following example from [26, Example 3.1.10] demonstrates (1) and (2) above. It is
worth examining in some detail. Consider the canonical map f : F1(S1)! F0(S0) that
is the identity in level 1. This is one of the maps we localized to form the stable model
structure, so it is a stable weak equivalence by deÆnition. Note that F0(S0) is just the
sphere spectrum S . For X any pointed space, (F1X)n = ⌃n �⌃n�1 ((S

1)^(n�1) ^X) for
for n � 1, and so in particular (F1S1)n = ⌃n �⌃n�1 S

n. As a space, this is a wedge of
n copies of Sn, and the copies may be regarded as indexed by the set of permutations
Tn = {Id, (1n), (2n), . . . , (n � 1,n)} (these are coset representatives for ⌃n/⌃n�1). Our
map f takes the form

S0 S1 S2 S3 · · ·

⇤

OO

S1

=

OO

W

T2
(S1 ^ S1)

OO

W

T3
(S1 ^ S1 ^ S1)

OO

· · ·

where in each level the component indexed by ↵ 2 Tn is mapped into Sn via the
canonical identiÆcation followed by ↵.



52 Stable categories and spectra via model categories

Of course we know ⇡naive
0 (S) = Z. The colimit system for ⇡naive

0 (F1S1) is

0! Z ,! Z2 ,! Z3 ,! Z4 ,! · · ·

where in each case the group includes into the next as a direct summand. So
⇡naive
0 (F1S1) is an inÆnite direct sum of copies of Z. In particular, we see that

Uf is not a stable equivalence and (equivalently) that f does not induce isomor-
phisms on ⇡naive

⇤ (�). Note that ⇡naive
⇤ (�) gives the “correct” answer for S , but not for

F1S1.

1.7.2 Understanding the smash product

Let us open up the deÆnition of the smash product and look inside. If X and Y are
symmetric spectra (left S-modules) recall that X ^Y (also known as X ^S Y ) is the
coequalizer of X ⌦ S ⌦ Y ◆ X ⌦ Y . Note that here X is being implicitly converted
from a left S-module into a right S-module via the twist map. Looking level-by-level,
we Ænd that (X ^Y )n is the coequalizer of

_

a+b+c=n

⌃n �⌃a⇥⌃b⇥⌃c
(Xa ^ (S1)⌦b ^Yc)◆

_

p+q=n
⌃n �⌃p⇥⌃q

(Xp ^Yq).

This probably looks horrible and scary, but we can tame things a bit by adopting a
more algebraic notation that we now pause to explain.
If a+ b + c + d + e = n write ⇢a[b]c[d]e for the permutation in ⌃n that interchanges

the b-block and the d-block and otherwise maintains the internal order within all 5
blocks. In the cases where a or c or e is zero we will drop them from the notation.
Also, if ↵ 2 ⌃p and � 2 ⌃q write ↵|� 2 ⌃p+q for the permutation that is ↵ on the front
p-block and � on the back q-block.
Let us denote elements of symmetric groups by Greek letters, elements of (S1)^n

by capital Roman letters, and elements of X⇤ and Y⇤ by lowercase Roman letters. In
addition, we write subscripts xn to denote elements of degree n, e.g. xn 2 Xn. Denote
the iterated structure map (S1)^n ^ Xp ! Xp+n by (An,xp) 7! Anxp , and the ⌃n
action on Xn by (↵n,xn) 7! ↵nxn. Observe that the equivariance of the structure map
is the relation

(↵nAn)(�pxp) = (↵n|�p)(Anxp). (1.7.3)

We claim that the spaces (X ^Y )n consist of all elements ↵n[xp ^ yq] for p + q = n
subject to the following relations:

(1)
⇣

↵n(�p |�q)
⌘

[xp ^ yq] = ↵n[�pxp ^�qyq] for p + q = n.

(2) Ak[xr ^ ys] = Akxr ^ ys = ⇢[r][k]s[xr ^Akys].

(3) (↵kAk)(�r+s[xr ^ ys]) = (↵k |�r+s)(Akxr ^ ys) = (↵k |�r+s)⇢[r][k]s[xr ^Akys]

Note that relation (2) is a special case of (3); we have listed it separately because it
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is easier to absorb in this simpler form. Also, relation (3) is really just relation (2) plus
equivariance.

Remark 1.7.9. There is a simple procedure for determining the permutations ⇢ ap-
pearing in the above formulas, as well as similar ones. For an equation of the form
“⇢(formula P) = formula Q”, regard each subscript u in P as a block of u symbols.
Then ⇢ is the permutation that rearranges the blocks as listed in P into the order
listed in Q. For example, in equation (2) consecutive blocks of length r, k, and s must
be re-ordered by bringing the k-block in front of the r-block.

As an example of how to use the above notation, let us work out X ^Y in the Ærst
three levels. Level 0 is easy, as there are no relations: (X ^Y )0 = X0 ^Y0. Level 1 has
(X^Y )1 = [(X0^Y1)^(X1^Y0)]/⇠ where the relation is A1(x0^y0) = (A1x0)^y0 =
x0 ^ (A1y0). If desired we can translate this back into categorical language and say
that (X ^Y )1 is the pushout of the diagram

S1 ^X0 ^Y0
f2

&&

f1

xx
X1 ^Y0 X0 ^Y1

with f1(A1,x0, y0) = A1x0 ^ y0 and f2(A1,x0, y0) = x0 ^A1y0.
In general, for (X ^ Y )n one writes down a big wedge of Xp ^ Yq (with extra

symmetric groups out front) and then quotients by relations coming from structure
maps out of lower levels. So for n = 2 we start with

(X2 ^Y0)_ (X1 ^Y1)_ (12)(X1 ^Y1)_ (X0 ^Y2),

where (12) is the generator of ⌃2 and appears here as a bookkeeping factor. The
relations are

(A2x0)^ y0 = x0 ^A2y0, A1x0 ^ y1 = x0 ^A1y1, A1x1 ^ y0 = ⇢[1],[1]x1 ^A1y0.

Translating again to categorical language, (X ^Y )2 is the colimit of a diagram

S1 ^X1 ^Y0

✏✏ &&

S2 ^X0 ^Y0

ss **

S1 ^X0 ^Y1

✏✏yy
X2 ^Y0 (12)(X1 ^Y1) X1 ^Y1 X0 ^Y2

where the maps are easily written down from the algebraic relations. As an exercise,
check that when Y = S this colimit gives exactly X2. Note that this Æxes the problem
we saw in our naive attempt back in Section 1.1.3, where the factors X1 ^ Y1 and
(12)(X1 ^Y1) were compressed into a single term.
This discussion also leads to the following useful fact:

Proposition 1.7.10. Let X , Y , and Z be symmetric spectra. To give a map of symmetric
spectra X ^Y ! Z is equivalent to giving maps Xp ^Yq! Zp+q for all p,q � 0 that are
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⌃p ⇥⌃q-equivariant and satisfy the identities

Ak(xp · yq) = Akxp · yq = ⇢[p],[k],q(xp ·Akyq).

A pairing X ^X! Z is commutative if it also satisÆes the identity

xp · x0q = ⇢[q],[p](x0q · xp).
Proof For the Ærst claim, just observe that relation (3) above is a consequence of the
listed relations and the equivariance of the structure maps in Z . The second claim is
routine.

This would be a good moment to see some examples of symmetric ring spectra,
but most of the standard examples are also examples of orthogonal ring spectra and
it is clearer to discuss them in that context. The reader might wish to look ahead at
Section 1.8.8 though.

1.7.4 Symmetric spectra and diagram categories

Let C be a closed symmetric monoidal category and let X be an invertible object

in C. Let X⇤ and ↵ : I
��! X⇤ ⌦X be a choice for inverse, and recall the dual map

↵̂ : X ⌦X⇤ ! I from Section 1.3.5. The adjoint of ↵̂ is a map X! F(X⇤, I ), and more
generally we get canonical maps

X⌦(k)! F

✓

(X⇤)⌦(n+k), (X⇤)⌦(n)
◆

(1.7.5)

adjoint to the map X⌦(k) ⌦ (X⇤)⌦(n+k)! (X⇤)⌦(n) that reverses the order of the tensor
factors in X⌦(k) and then uses ↵̂ repeatedly to eliminate adjacent factors of X and X⇤

(note that there are various associativity isomorphisms as well, but we are ignoring
these). This leads to the following picture of elements in C and canonical “maps”
between them, where an arrow from A to B labelled Z means a map Z ! F(A,B)
and ⌃n acts on the right of (X⇤)⌦(n) by permutation of the factors:

I X⇤Xoo X⇤ ⌦X⇤Xoo

X⌦(2)

bb

⌃2

⌃⌃
X⇤ ⌦X⇤ ⌦X⇤Xoo

⌃3

⌃⌃

X⌦(2)

ff

X⌦(3)

]] · · ·oo (1.7.6)

Remark 1.7.11. There are canonical isomorphisms (X⇤)⌦(k) ! F(X⌦(k), I ) induced by
the tensoring operation F(A,B) ⌦ F(C,D) ! F(A ⌦ C,B ⌦D), and the above de-
scriptions might make more sense if one uses these isomorphisms to replace every
appearance of the domain by the codomain. The usual left action of ⌃n on X⌦(n)

(see Section 1.3.5) gives a right action on F(X⌦(n), I ), and the maps in (1.7.5) were set
up so that the adjoints generalize the evaluations X⌦(k) ⌦F(X⌦(k), I )! I .
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To capture the picture in (1.7.6) more formally, deÆne a category ⌃
op
X enriched over

C as follows (apologies for the mysterious “op” but it will become clear in a moment
why we put it there). It has one object [n] for every n � 0, and

⌃
op
X ([n], [k]) =

8

>

>

<

>

>

:

; if k > n,

X⌦(n�k) �⌃n�k ⌃n if k  n.

In the last line, ⌃n�k sits in ⌃n as permutations of the Ærst n � k elements, and the
notation means the evident analog of ⌃n �⌃n�k X

⌦(n�k) obtained by reversing left and
right. To deÆne this as a category we need to explain how to compose maps, and we
will do this using algebraic notation as in the last section. If maps from [n] to [k] are
denoted B1 . . .Bn�k�n then the rule is

(B1 . . .Bk�l�k)(C1 . . .Cn�k�n) = C1 . . .Cn�kB1 . . .Bk�l (idn�k |�k)�n (1.7.7)

(the switching of the B’s and C’s seems annoying but works itself out when we move
from ⌃

op
X to ⌃X ). This rule comes from reading o� how compositions work in (1.7.6).

For example, pretend X is a one-dimensional vector space and ↵̂ is evaluation. The
left-hand-side of (1.7.7) takes a tensor product of functionals �1 ⌦ · · · ⌦ �n on X ,
permutes them into the new tensor ��(1) ⌦ · · · ⌦ ��(n), evaluates the Ærst n � k of
these on the C’s to get [��(1)(C1)��(2)(C2) · · · ] ·��(n�k+1) ⌦ · · ·⌦��(n), permutes the
remaining functionals according to �, and then evaluates the Ærst k � l of these at the
B’s. One readily veriÆes that the right-hand-side of (1.7.7) does the same thing.
So we have a category ⌃

op
X and (1.7.6) amounts to the observation that our choice

of (X⇤, ↵̂) determines a canonical (enriched) functor ⌃op
X ! C sending [n] to (X⇤)⌦(n).

This in turn means that if Z is any object in C then we get an (enriched) functor
⌃X ! C by [n] 7! F((X⇤)⌦(n),Z).
A brief amount of thought reveals that enriched functors ⌃X ! C are precisely

symmetric X-spectra. Note that in ⌃X rule (1.7.7) becomes instead

��1n C1 · · ·Cn�k � ��1k B1 · · ·Bk�l = ��1n (idn�k |��1k )C1 · · ·Cn�1B1 · · ·Bk�l

which could be made prettier by removing all of the inverses.
To paraphrase this discussion, the category ⌃op

X in some sense encodes the universal
structure an inverse of X would have in C. Symmetric X-spectra arise by “remembering”
how all the inverses of X map into some given object. This is how one could re-invent
the notion of symmetric spectra, if one were trapped on a desert island and forgot
how it all worked.
Let us push these ideas a little further. The subcategory of C pictured in (1.7.6) is

symmetric monoidal, and this structure can be lifted back to ⌃
op
X . DeÆne the tensor

by [k] ⌦ [l] = [k + l], let the associativity isomorphism be the identity, and let the
symmetry isomorphism t : [k]⌦ [l]! [l]⌦ [k] be the permutation ⇢[k],[l]. We also have
to deÆne the tensor product of maps, and this is done using the formula

A1 . . .Ak↵s ⌦B1 . . .Bl�t = A1 . . .AkB1 . . .Bl⇢k,[s�k],[l],t�l (↵s |�t). (1.7.8)

This formula is again easily derived by thinking about vector spaces and functionals.
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The left-hand-side is the operation that takes functions �1, . . . ,�s,µ1, . . . ,µt , permutes
the Ærst set according to ↵ and the second set according to �, then successively
evaluates the Ærst part of each set at the A’s and B’s in order (with the Ærst A getting
plugged into the Ærst �, and so forth). The right-hand-side also does the ↵ and �
scrambling but then moves the Ærst group of µ’s in front of the last group of �’s,
before plugging in the A’s and B’s. These are clearly the same operation.

It is a good exercise to check that with the above deÆnitions ⌃op
X is indeed symmetric

monoidal.
The symmetric monoidal structure on ⌃

op
X yields a corresponding structure on

⌃X , and then this passes to a symmetric monoidal structure on the functor cate-
gory F(⌃X,C) through a process called Day convolution. BrieØy, given two functors
Y,Z : ⌃X ! C one forms the diagram

⌃X ⇥⌃X

⌦
✏✏

Y⇥Z // C ⇥ C ⌦ // C

⌃X

Y⌦Z

55 (1.7.9)

and Y ⌦Z is the (enriched) left Kan extension. The fact that the tensors on ⌃X and C
are both symmetric monoidal yields that the tensor product of functors is symmetric
monoidal as well.

To summarize this discussion, we could have deÆned symmetric spectra as follows:

DeÆnition 1.7.12 (Symmetric spectra, approach #2). Let ⌃ denote the category ⌃S1 ,
as deÆned above. This is a category enriched over Top⇤. A symmetric spectrum is
simply an enriched functor ⌃! Top.

This approach provides a useful perspective on the di�erence between classical
spectra and symmetric spectra. Classical spectra are diagrams indexed by the evident
subcategory NS1 of ⌃S1 . The monoidal structure on ⌃S1 does not descend to this
subcategory: to deÆne the tensor product of two maps one needs the ⇢-permutations
as in (1.7.8), and these are not available in NS1. This seems to be the core reason that
classical spectra do not have a smash product at the model category level.

1.8 Orthogonal spectra

The development of orthogonal spectra proceeds along essentially the same lines as
what we did for symmetric spectra, and so we will be able to cover this fairly quickly.
We describe the two (equivalent) approaches, one going through S-modules and the
other via enriched diagrams. In each case there are some annoying technicalities that
have to be dealt with at the very beginnning, but after that everything works much as
for symmetric spectra. Certain formulas that were a little complicated in symmetric
spectra—because they required an introduction of a permutation—actually work out
easier in the orthogonal case because the machinery in some sense keeps track of the
permuation for us. The theory of orthogonal spectra was developed in [38].
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What is an orthgonal spectrum? Very brieØy, it assigns to each Ænite-dimensional
inner product space V a pointed space XV , and to every linear isometric inclusion
f : V ,! W a natural structure map �f : SW�f (V ) ^ XV ! XW where W � f (V )
is the orthogonal complement of f (V ) in W . The extra complication is that these
structure maps must be continuous in f in an appropriate sense. Note also that if
f is an isomorphism then by naturality the structure map will be an isomorphism

XV
��! XW , in particular showing that the orthogonal group O(V ) of self-isometries

will act on each XV .
Why bother with orthogonal spectra? There are at least three reasons. Firstly, as

we mentioned above the whole theory works out a bit more naturally, with simpler
formulas. Secondly, orthogonal spectra adapt easily to the setting of equivariant
spectra (see [37] or [22, Appendix A]). Finally, unlike the situation for symmetric
spectra, orthogonal spectra have the nice property that the weak equivalences are just
the maps inducing isomorphisms on stable homotopy groups.
In this section we will in fact discuss four types of spectra that are related to each

other as indicated in the following quadrangle:

(1.8.1)

1: symmetric spectra // 2: generalized symmetric spectra

3: coordinatized orthogonal spectra // 4: orthogonal spectra.

The names for types 2 and 3 on the anti-diagonal are not standard (and there seem
to be no standard names for these). Our development will proceed in the order
1 �! 2 �! 4 �! 3, although other orders of navigation are also possible.

1.8.2 Prelude: generalized symmetric spectra

The generalized symmetric spectra we are about to introduce do not typically get
much airtime, as there is little payo� for the extra work and they are not truly
“coordinate-free”. But they are a useful prelude to orthogonal spectra, and only a slight
modiÆcation of the symmetric spectra story we saw in Section 1.7. They brieØy appear
in [26], for example in [26, Remark 2.1.5].

For any Ænite set T consider the real vector space RhT i with basis T , as well as its
one-point compactiÆcation ST = SRhT i. Let ⌃(T ) denote the group of permutations
of T , and note that this group acts naturally on ST . Write n for the set {1,2, . . . ,n}, so
that ⌃n = ⌃(n).

A generalized symmetric spectrum should be—in part—a functor T 7! XT deÆned
on the category of Ænite sets with isomorphisms, taking values in the category of
pointed spaces. Note that functoriality will give each XT a ⌃(T )-action. In addition,
the spectrum should come with structure maps for every subset inclusion T ✓U of
the form

�T ,U : SU�T ^XT ! XU
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which are ⌃(U �T )⇥⌃(T )-equivariant, and which are compatible with the various
isomorphisms XJ � XJ 0 for J � J 0 . By restricting to the special sets n as well as the
subset inclusions n ,! k for n  k, we get a (classical) symmetric spectrum X̃ . If
|T | = n then every bijection T ! n induces a homeomorphism XT ! Xn, and one
can check that there is really no more information in X than in X̃ . But what we have
accomplished here is to produce a notion of symmetric spectrum that avoids any
dependence on the particular choice of Ænite sets n, which after are a bit unnatural.

Remark 1.8.1. Note that we can actually regard the spectrum as having structure maps
for any inclusion f : T ,!U , of the form

�f : SU�f (T ) ^XT ! XU.

These are obtained as compositions

SU�f (T ) ^XT
id^Xf�! SU�f (T ) ^Xf (T )

�f (T ),U�! XU.

Just as for symmetric spectra, we can follow two approaches for setting up the
generalized version. To begin with, let ⌃I denote the category of Ænite sets and
isomorphisms.

Approach #1:

DeÆne a ⌃I-sequence to be a functor ⌃I! Top⇤. DeÆne the tensor product of
⌃I-sequences X and Y by

(X ⌦Y )U =
_

T✓U
XT ^YU�T . (1.8.3)

Note that for the ⌃(U )-action, an element ↵ 2 ⌃(U ) maps the summand XT ^YU�T
to X↵(T ) ^Y↵(U�T ) via X↵|T ^X↵|U�T . Also note that the twist map in the symmetric
monoidal structure carries the summand XT ^YU�T (indexed by T ✓U ) to YU�T ^XT
(indexed by U �T ✓U ) via the usual twist map from Top⇤.

The “sphere spectrum” S is the ⌃I-sequence T 7! ST , which can be checked to
be a commutative monoid. We deÆne a generalized symmetric spectrum to be an
S-module.
Unfortunately, because ⌃I is not a small category we cannot form the category

of ⌃I-sequences without running into set-theoretic issues. See Remark 1.5.4 for the
common ways to get around this; in particular, we can choose a skeletal subcategory
⌃Iskel ,!⌃I together with a retraction r, and then transplant all of the deÆnitions
for ⌃I-sequences to ⌃Iskel -sequences. One choice for skeletal subcategory is precisely
the category ⌃I from Section 1.7, leading to the previous (ungeneralized) notion of
symmetric spectra.
Note that the monoidal product on ⌃I-sequences is another example of Day

convolution (see (1.7.9)): the category ⌃I has the symmetric monoidal structure q
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given by disjoint union, and X ⌦Y is the left Kan extension in the diagram

⌃I⇥⌃I
✏✏

q
✏✏

X^Y // Top⇤

⌃I.
X⌦Y

::

The most natural formula for this left Kan extension is

(X ⌦Y )(U ) = colim[AqB!U ]XA ^YB
where the indexing category consists of triples (A,B,f : Aq B! U ) where f is a
map in ⌃I and therefore an isomorphism (the maps between triples are the evident
ones). This indexing category is not small, but again it has a small skeleton and so the
colimit still exists. By associating the triple (A,B,f ) with the image f (A) ✓ U , one
readily identiÆes the above colimit with the expression in (1.8.3).

Approach #2:

For Ænite sets A and B deÆne a category [A,B] whose objects are sets C such that
A ✓ C and |C | = |B|; morphisms C ! C 0 are bijections g : C ! C 0 which are the
identity on A. Next deÆne a category ⌃ enriched over Top⇤ whose objects are the
Ænite sets and where the morphisms are given by

⌃(A,B) = colim[A,B]



Isom(C,B)+ ^ SC�A
�

(and Isom(C,B) is the set of bijections from C to B). Note that the category [A,B]
indexing the colimit consists only of isomorphisms, and so the colimit can be identiÆed
with the co-invariants of the group of automorphisms acting on any spot of the diagram.
In particular, for any subset A ✓ C such that |C | = |B| one has

⌃(A,B) � Isom(C,B)+ ^⌃(C�A) SC�A.

We can also regard ⌃(A,B) as the subset of Hom(A,B)+ ^ SB consisting of all pairs
(f ,x) where f is an injection and x 2 SB�f (A) (it is easy to check that the above colimit
maps to this space in the evident way). If we do this, then the composition is easy to
describe: ⌃(B,C)⇥⌃(A,B) �!⌃(A,C) is the map

⇣

(g,y), (f ,x)
⌘

7! (gf ,y ^ g(x)).
In this approach, a generalized symmetric spectrum is simply an enriched functor

⌃! Top⇤. Just as in Approach #1, one runs into the di�culty that ⌃ is not a small
category—and one way of dealing with this is to replace ⌃ with a skeletal subcategory,
for example the category ⌃ from DeÆnition 1.7.12.

1.8.4 Orthogonal spectra

Generalized symmetric spectra were built around the vector spaces RhAi where A
ranged over all Ænite sets. So these are vector spaces with a choice of basis, and
one is naturally led to wonder about a basis-free approach. That is essentially what
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orthogonal spectra are. The role of the symmetric groups ⌃(A) is instead played by
orthogonal groups O(V ).
Let OI be the category of Ænite-dimensional real inner product spaces, with linear

isometric isomorphisms for the maps. So this category only has maps from V to W
when dimV = dimW , and all such maps are isomorphisms. We regard OI as being
enriched over Top, with OI(V ,W ) having the usual subspace topology induced by
the compact-open topology on the space of all continuous maps WV . For W 2 obOI
deÆne O(W ) = OI(W,W ) to be the space of isometries from W to itself. If V ✓W
write W �V for the orthogonal complement of V in W . Then we have a canonical
inclusion O(V ) ,! O(W ): isometries of V extend to W by having them act as the
identity on W �V . We will write Isom(U,V ) for space of linear isometric inclusions
from U into V , so note that when dimU = dimV we have Isom(U,V ) = OI(U,V ).

Approach #1:

An OI-sequence is simply an enriched functor OI ! Top⇤. The symmetric
monoidal structure � on OI induces a symmetric monoidal structure on OI-sequences
by Day convolution. SpeciÆcally, if X and Y are OI-sequences then X ⌦ Y is the
(enriched) left Kan extension

OI ⇥OI

⌦
✏✏

X⇥Y // Top⇤ ⇥Top⇤
^ // Top⇤

OI
X⌦Y

33

and can be given by the (enriched) colimit formula

(X ⌦Y )W = colimA�B!W (XA ^YB). (1.8.5)

Here the indexing category has objects consisting of tuples (A,B,f : A � B! W )
where f is a map in OI , and the evident morphisms (once again this is not a small
category, but has a small skeleton). The enriched colimit is the coequalizer in Top of
the two evident arrows

`

A,B,A0 ,B0 Isom(A,A0)⇥ Isom(B,B0)⇥ Isom(A�B,W )⇥ (XA ^YB)

✏✏✏✏
`

A,B Isom(A�B,W )⇥ (XA ^YB)

and so in particular the topology on (X ⌦ Y )W comes from the topology on both
Isom(A�B,W ) and on XA ^YB. As a set (ignoring the topology) we can write

(X ⌦Y )W =
_

V✓W
XY ^YW�V . (1.8.6)

by associating to every isometric isomorphism f : A�B!W the subspace f (A) ✓W
(but this precisely ignores the topology on Isom(A�B,W )). Note that in this picture
an isometry h : W !W 0 acts on this wedge by sending the summand XV ^YW�V
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to Xh(V ) ^ Yh(W�V ) using the maps X(h|V ) and Y (h|W�V ). Also observe that the
description in (1.8.5) readily gives the continuity of the maps

OI(W,W 0)⇥ (X ⌦Y )W ! (X ⌦Y )W 0 .

The indexing category for the colimit in (1.8.5) has the property that all maps are
isomorphisms, so it follows formally that the colimit can be identiÆed with the wedge
of the co-invariants of the groups of automorphisms corresponding to every connected
component of the category. So if we choose one Vp ✓W of dimension p for every
0  p  dimW then we can write

(X ⌦Y )W �
_

p

O(W )+ ^O(Vp)⇥O(W�Vp) [XVp
^YW�Vp

]. (1.8.7)

This is correct as topological spaces but is non-canonical because of the choices
of Vp . The bijection from (1.8.7) to (1.8.6) sends a tuple (↵,x^ y 2 XVp

^YW�Vp
) to

(↵⇤(x)^↵⇤(y)) 2 X↵(Vp) ^Y↵(W�Vp).
This tensor gives a closed symmetric monoidal product on the category of OI-

sequences, where the symmetry isomorphism t : X⌦Y ! Y ⌦X sends x^y 2 XA^YB
to y ^ x 2 YB ^XA, using the description of (1.8.5).
Let S denote the OI-sequence deÆned by V 7! SV . It is easy to check that the

maps SV ^ SW ! SV�W make S into a commutative monoid in the category of
OI-sequences. DeÆne an orthogonal spectrum to be a left S-module. If X and Y are
orthogonal spectra then their smash product is X ^Y = X ⌦S Y .
We will write SpO for the category of orthogonal spectra.

Remark 1.8.2. Since we want to consider all enriched functors OI ! Top⇤ as a cate-
gory, we run into the usual problem that OI is not small. One can again get around
this by choosing a small skeletal subcategory, as in Remark 1.5.4. One such subcat-
egory consists of the Euclidean spaces (Rn, ·) with standard dot product, for each
n � 0; this leads to a spectrum being an assignment n 7! Xn where Xn is a pointed
space with an O(n)-action, together with structure maps S1 ^Xn ! Xn+1 such that
the iterated maps Sp^Xn! Xn+p are O(p)⇥O(n)-equivariant. Such an object could
be called a “coordinatized orthogonal spectrum”, and completes our journey around
the square (1.8.1).

Approach #2:

Here we deÆne a Top⇤-enriched category O having the same objects as OI and
where O(V ,W ) is supposed to parameterize the various suspension maps from XV to
XW in a spectrum X . Recall that for every isometry f : V !W (which will necessarily
be injective) we are supposed to have a suspension map �f : SW�f (V ) ^XV ! XW .
The tricky part here is that there is not a single sphere involved in these maps—the
sphere varies continuously with f . So to this end, let Isom(V ,W ) be the space of
isometries from V into W and let W �V ! Isom(V ,W ) denote the bundle whose
Æber over f : V !W is W � f (V ). DeÆne

O(V ,W ) = Th(W �V ! Isom(V ,W )),
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the Thom space of the bundle W � V . Note that if |V | > |W | then Isom(V ,W ) is
empty and this Thom space is a single point.
A point in O(V ,W ) can be represented by a pair (f ,x) consisting of an isometry

f : V !W and x 2 SW�f (V ). Using this notation, if (g,y) 2 O(W,Z) then composition
in O is given by the formula

(g,y) � (f ,x) = (gf ,g(x) + y)

(where we extend the sum-of-vectors map (g(W )� gf (V ))⇥ (Z � g(W ))! Z � gf (V )
to the one-point compactiÆcations in the usual way).
Observe that we can make the following identiÆcations:

O(V ,W ) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

O(W )+ ^O(W�V ) SW�V if V ✓W ,

Isom(V ,W ) if dimV = dimW,

Isom(U,W )+ ^O(U�V ) SU�V if dimV  dimW and V ✓U �W ,

⇤ if dimW < dimV .

The Ærst two lines are actually special cases of the third, but are included separately for
pedagogical purposes. For the third line use the map Isom(U,W )+^O(U�V ) SU�V !
Th(W �V ) given by (h,x) 7! (h|V ,h(x)).

The point to remember in the above descriptions is that when dimV = dimW we
have exactly Isom(V ,W ) as the space of maps from V to W . When V ✓W we put
an SW�V into the space of maps from V to W , and then allow post-compositions with
our O(W ) maps from W to itself—this accounts for the O(W )+^O(W�V ) SW�V term.
When V and W are incomparable we choose a V ✓ U such that dimU = dimV
and then we allow compositions between our SU�V maps from V to U and our
Isom(U,W ) maps from U to W , accounting for the Isom(U,W )+ ^O(U�V ) SU�V

term.
In this approach an orthogonal spectrum is simply an enriched functor O! Top⇤.

Unraveling this deÆnition, an orthogonal spectrum X consists of

– A functor X : OI ! Top⇤
– For every pair V ✓W a structure map

�V ,W : SW�V ^XV ! XW

that is O(W �V )⇥O(V )-equivariant.

These structure maps must satisfy evident unital and associativity conditions that are
easy to work out.

We leave the reader to work out the following analog of Proposition 1.7.10. Note that
the isometry ⇢ that appears here is naturally forced upon us, since the second equality
does not even make sense without it. In this sense the situation is a bit simpler than
for symmetric spectra.

Proposition 1.8.3. Let X , Y , and Z be orthogonal spectra. Giving a pairing X ^Y ! Z
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is equivalent to giving a collection of maps XV ^YW ! ZV�W that are O(V )⇥O(W )-
equivariant and satisfy the identities

AU (xV yW ) = (AUxV )yW = ⇢(xV · (AUyW ))

where ⇢ is the evident isometry V � (U �W )! (U �V )�W that is natural in the three
variables. (Here we are using the algebraic notation from (1.7.2), adapted in the obvious
way to the present context). A pairing X ^X ! Z is commutative if it also satisÆes the
identities xV · yW = ⇢(yW · xV ) where ⇢ is the twist isometry W �V ! V �W .

1.8.8 Examples

In this section we give several standard examples of orthogonal and symmetric ring
spectra.

(a) Let R be a ring and let HR be the spectrum V 7! RhSV i where the latter is the free
R-module on the set SV with an appropriate topology (and where the basepoint is
equal to zero). It is convenient to think of points in RhSV i as Ænite conÆgurations
on SV with labels in R, written formally as

P

i rixi with ri 2 R, xi 2 SV . The
maps SW ^RhSV i ! RhSW�V i send

⇣

x,
P

riyi
⌘

!P

ri (x^ yi ). The product maps

RhSV i^RhSW i ! RhSV�W i send
⇣

P

rixi ,
P

sjyj
⌘

!P

i,j ri sj [xi^yj ], and the unit
maps SW ! RhSW i send x 7! 1 · x.

(b) Let MO be the spectrum V 7!MOV = EO(V )+ ^O(V ) SV . Here we take EG to
be the geometric realization of the standard simplicial space [n] 7! Gn+1 with
projections as face maps. Note that this comes with canonical maps EH! EG for

H! G and EG1 ⇥EG2
��! E(G1 ⇥G2), and that G acts on EG from both the left

and the right via its diagonal action on the Gn+1 terms. The O(V ) action on MOV
comes from the left action on EO(V ).
The maps SW ^MOV !MOW�V are (x, (↵, y)) 7! (↵,x ^ y) where by abuse

we write ↵ for both an element of EO(V ) and its image in EO(W � V ). It is
informative to check the O(W ) ⇥O(V )-equivariance. The O(V )-equivariance is
clear, but the O(W )-equivariance looks wrong at Ærst. One must use that O(W )
and O(V ) commute inside of O(W �V )!
The pairings MOV ^MOW !MOV�W are the evident ones: (↵,x)^ (�, y) 7!

(↵�,x^y), where ↵� refers to the pairing EO(V )⇥EO(W )! EO(V �W ). The unit
maps SV !MOV send x to (IdV ,x). We leave the reader to check the necessary
relations to see that this is indeed a commutative ring spectrum.

(c) Constructing MU as an orthogonal ring spectrum is a little tricky. One can mimic
our construction of MO using complexiÆcations and unitary groups and write
MU(V ) = EU(VC)+ ^U(VC) S

VC where VC is the complexiÆcation of V , but then
one only gets suspension operators by SWC�VC when one wants SW�V . So this
doesn’t quite work. To explain the Æx, if W is a Hermitian inner product space
deÆne

MUHerm
W = EU(W )+ ^U(W ) S

W .
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This has a left U(W )-action coming from the left action on EU(W ). This construc-
tion satisÆes all the analogous properties to (b) above, but only for Hermitian spaces.
For a real inner product space V deÆne MUV = Map(SiV ,MUHerm

VC
) where iV

is the imaginary part of VC. Note that O(V ) acts on SiV in the evident way, on
MUHerm

VC
through the map O(V )! U(VC), and then on the mapping space via

conjugation.
It is an easy exercise to check that one indeed gets natural maps SV ^MUW !

MUV�W making MU into an orthogonal ⌦-spectrum. Moreover, smashing of
maps gives the pairings

MUV ^MUW Map(SiV ,MUHerm
VC

)^Map(SiW ,MUHerm
WC

)

(f ,g)7!f ^g
✏✏

Map(SiV�iW ,MUHerm
VC

^MUHerm
WC

)

✏✏
Map(SiV�iW ,MUHerm

(V�W )C
) MUV�W

which make MU into an orthogonal commutative ring spectrum.
(d) Real K-theory was written down as a symmetric commutative ring spectrum by

Joachim [28]. It is not completely obvious how to do this, but Joachim found a
way using spaces of Fredholm operators. The ⌃n-actions come from the action
on a tensor product of Hilbert spaces H⌦n. Note that this construction can be
adapted to complex K-theory using techniques similar to those in (c), but it does
not immediately yield an orthogonal spectrum in an evident way.

(e) (Waldhausen K-theory). Let C be an exact category in the sense of [44] (or al-
ternatively, a category with coÆbrations and weak equivalences in the sense of
Waldhausen). Waldhausen’s S•-construction produces a spectrum K(C) called the
Waldhausen K-theory spectrum of C. Geisser and Hesselholt observed in [19, Sec-
tion 6] that if one sets things up carefully then this construction actually produces a
symmetric spectrum, and that if C has a well-behaved tensor product then K(C) is
in fact a symmetric ring spectrum. While it would take us too far aÆeld to give a
completely rigorous development of these ideas, by doing a bit of handwaving we
can nevertheless give the general idea. In this example we work entirely simplicially,
mostly just to avoid the excess step of needing to apply geometric realization
constantly.
The S•-construction applied to C gives a simplicial set [n] 7! SnC where an

element of SnC is—roughly speaking—a Æltered object A1 ,! A2 ,! · · · ,! An
in C together with a particular choice for every quotient Ai/Aj with j  i . We
will refer to this as a “Æltered object with quotient data”. For i � 1 the face map
di omits Ai from the Æltration, whereas d0 sends the above Æltered object to
A2/A1 ,! A3/A1 ,! · · · ,! An/A1. Note that S0C = ⇤ by convention, and S1C is
the set of objects in C.
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DeÆne K(C)0 = ⇤ and K(C)1 = S•C. We will extend this to a generalized symmetric
spectrum (as discussed in Section 1.8.2) by deÆnining K(C)Q for every Ænite set
Q. To do this we need the notion of a Q-simplicial set. Recall that � denotes the
simplicial indexing category, and deÆne �Q to be the product category

Q

Q�—a
product of copies of � indexed by the set Q. Note that an object in �Q is a Q-tuple
n = (nq)q2Q , or equivalently a function Q! N. We deÆne a Q-simplicial set to be a
functor (�Q)op! Set. Note that if |Q| = k then a Q-simplicial set is the same thing
as a k-fold multi-simplicial set, but we think of the di�erent simplicial directions as
being indexed by Q.

If X is a Q-simplicial set, deÆne diag(X) to be the simplicial set [n] 7! X(n,n,...,n)
where the subscript indicates the constant Q-tuple whose value is n. We will also
need the notion of skeleton: if T ✓Q, and r � 0, deÆne the (T ,r)-skeleton of X to
be the Q-simplicial set given by

(sk(T ,r)X)(n) = X(n0), where n0q =

8

>

>

<

>

>

:

nq if q < T ,
min{nq, r} if q 2 T .

Despite the cumbersome deÆnition, this just says that whenever q 2 T we replace
the simplicial q-direction of X by its usual r-skeleton.

Let SQ be the smash product of copies of S1 = �1/@�1 indexed by the set Q. In
simplicial degree k the set (SQ)k consists of k +1 elements, which correspond to
the basepoint together with the k possible degeneracies of the 1-simplex [01].

The following strange result turns out to be the key to producing our desired
symmetric spectrum.

Proposition 1.8.4. Let Q and Q0 be Ænite sets, and let X be a QqQ0-simplicial set.
Assume that sk(Q0 ,0)X = ⇤. Then there is a natural map of simplicial sets

SQ0 ^diag(sk(Q0 ,1)X) �! diag(X).

Proof This is a combinatorial exercise left to the reader. The main point is that
the non-basepoint elements of (SQ0 )k can be thought of as exactly corresponding
to the k di�erent ways of applying degeneracies in the Q0-directions to move from
simplicial degree 1 up to simplicial degree k. The desired map is deÆned to consist
exactly of these degeneracy maps.

With the above tools in hand, we return to Waldhausen K-theory. Recall that
every [n] in � may be regarded as a category, in which there is a unique map
from i to j whenever i < j . Filtered objects of length n in C may be identiÆed with
functors [n]! C that send 0 to the zero object of C. Likewise, we associate the
tuple n = (nq)q2Q to the product category [n] =

Q

q2Q[nq], and deÆne an n-Æltered
object to be a functor [n]! C which sends every tuple containing 0 to the zero
object. For example, a (1,1)-Æltered object is the same as an object of C, and a
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(2,3)-Æltered object is a diagram of the form

X11 //

✏✏

X12

✏✏

// X13

✏✏
X21 // X22 // X23.

For each Ænite set Q, deÆne SQ
• C to be the Q-simplicial set which in multidegree

(n) consists of all n-Æltered objects of C satisyÆng certain coÆbration conditions
together with particular choices for various quotient objects (again, we are being
intentionally vague and only giving the basic idea). DeÆne K(C)Q = diag(SQ

• C).
Note that ⌃(Q) acts naturally on this construction, by permutation of the factors.

Observe that sk(Q0 ,1)(S
QqQ0
• C) = SQ

• C. So Proposition 1.8.4 gives maps

SQ0 ^K(C)Q! K(C)QqQ0

which are readily checked to be ⌃(Q0) ⇥⌃(Q)-equivariant. Thus, we have a gen-
eralized symmetric spectrum. Note that there does not seem to be any obvious
approach for producing an orthogonal spectrum here.

If in addition C has a well-behaved tensor product (one that preserves coÆbrations
and exactness) then we can take an (nq)q2Q-Æltered object X and an (ks)s2Q0 -Æltered
object Y and tensor them together to get a (nq k)QqQ0 -Æltered object X ⌦Y . This
yields maps

K(C)Q ^K(C)Q0 ! K(C)QqQ0

which make K(C) into a symmetric ring spectrum.
We again refer to [19, Section 6.1] for a detailed treatement of this material.

1.8.9 Model structures for orthogonal spectra

We now turn to the development of the commonly-used model category structures for
orthogonal spectra. By now the following series of results will be very familiar.

Proposition 1.8.5. There exists a model category structure on SpO where the weak equiva-
lences and Æbrations are levelwise. This is called the level, projective model structure.

Proof Direct application of Theorem 1.5.1(a) in the setting of enriched diagrams.

The evaluation functors EvV : SpO! Top⇤ have left adjoints FV given by

(FVX)W = Th
⇣

W �V ! Isom(V ,W )
⌘

^X

�

8

>

>

>

>

<

>

>

>

>

:

O(W )+ ^O(W�V ) (SW�V ^X) if V ✓W,

OI(U,W )+ ^O(U�V ) (SU�V ^X) if V ✓U and dimU = dimW,

⇤ if dimW < dimV .

Observe that if V ✓W there is a canonical map FW (SW�V ^X)! FV (X).
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DeÆnition 1.8.6. The stable projective model structure on SpO is the BousÆeld
localization of the level projective model category structure at the set of maps

n

FW (SW�V ^ S0)! FV (S0)
�

�

�V ✓W
o

.

There is a simple comparison map between orthogonal spectra and symmetric
spectra. Let e1, . . . , en be the standard basis for Rn, so that we have the usual inclusion
Rn ✓ Rn+1. The choice of vector en+1 gives a map R ! Rn+1 � Rn (sending 1 to
en+1) and therefore an induced homeomorphism S1 ! S (Rn+1�Rn). Note also that
permutation of basis elements gives a group map ⌃n!O(Rn).
There is a forgetful functor U : SpO! Sp⌃ that sends an orthogonal spectrum

X to the symmetric spectrum [n] 7! XRn , where the ⌃n-action on XRn comes from
restricting the O(Rn)-action and the structure maps come from those in X via the
identiÆcation S1 � S (Rn+1�Rn).
The following results are all proven in [38]:

Proposition 1.8.7.

(a) The stable projective structure on SpO is a stable, closed symmetric monoidal model
category satisfying the Monoid Axiom as well as the Algebraic Creation and Invariance
Properties and the Strong Flatness Property.

(b) The Æbrant objects in SpO are the levelwise-Æbrant ⌦-spectra, meaning orthogonal
spectra for which the adjoints to the structure maps XV ! ⌦W�VXW are all weak
equivalences for V ✓W .

(c) The forgetful functor U : SpO! Sp⌃ has a left adjoint G and the pair (G,U ) is a
Quillen equivalence.

(d) A map f : X ! Y in SpO is a stable weak equivalence if and only if Uf is a weak
equivalence in SpN (slightly abusing our use of U here).

Proof The precise references for the di�erent parts are: model structure [38, 9.2],
monoidal properties [38, 12.1 (take R = S )], Algebraic Creation Property [38, 12.1(i)],
Algebraic Invariance [38, 12.1vi, vii], Strong Flatness [38, 12.3, 12.7], Quillen Equivalence
[38, 10.4], U detects stable weak equivalences [38, 8.7].

Note that (d) is somewhat of a surprise, as this is not true when orthogonal spectra
are replaced with symmetric spectra. The topology of the orthogonal groups turns
out to be what makes this work, as we now explain. If X is an orthogonal spectrum
deÆne ⇡k(X) = colimn⇡n+k(XRn ). These are precisely the homotopy groups of the
underlying BousÆeld-Friedlander spectrum. One might think to include other XV
in the colimit system, but there is no point as XRn � XV when dimV = n. Part (d)
of Proposition 1.8.7 is equivalent to the statement that the stable equivalences of
orthogonal spectra are just the ⇡⇤-isomorphisms.
The key to understanding this is to look at the map Fn+1(S1 ^A)! Fn(A), where

we now write Fn as short for FRn . We claim this is a ⇡⇤-isomorphism (the analog was
false for symmetric spectra). In level n+ k this map is

O(n+ k)+ ^O(k�1) (Sk�1 ^ S1 ^A) �!O(n+ k)+ ^O(k) (Sk ^A).
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The A just comes out on both sides as a smash factor, so we might as well throw
it away. Also, we won’t change the stable homotopy groups (except for a shift) if we
smash both sides with Sn, and this gives

O(n+ k)+ ^O(k�1) S
n+k �!O(n+ k)+ ^O(k) S

n+k .

Now, if X is a left G-space and H  G then

G+ ^H X � G+ ^H (G+ ^G X) � (G+ ^H G+)^G X � (G/H+ ^G+)^G X

� G/H+ ^X.

In our case O(n+ k) acts on Sn+k , so the map simpliÆes to

O(n+ k)/O(k � 1)+ ^ Sn+k !O(n+ k)/O(k)+ ^ Sn+k .

Since O(k)/O(k � 1) � Sk�1, the map O(n+ k)/O(k � 1)! O(n+ k)/O(k) is (k � 1)-
connected and so the smash with Sn+k is (n + 2k � 1)-connected. As this goes to
inÆnity with k, we have our isomorphism on stable homotopy groups.

1.9 EKMM spectra

Unpacking the deÆnitions of [18] takes quite a bit of time and energy. There are
several layers to unravel, with quite a bit of intricate mathematics. Anything close to a
complete account would involve reproducing a big chunk of the book [18]. Since our
aim is only to survey this material, we will content ourselves with a very incomplete
account. Our approach will be to give an outline of all the main steps, but with almost
none of the details behind them.
Before embarking on this outline, though, we can at least explain the basic idea.

Start with the notion of a spectrum deÆned on a May universe U. This is basically the
idea of BousÆeld-Friedlander spectra, but done in a coordinate-free way. If M and
N are two such spectra, then the smash product M ^N seems to be most naturally
deÆned as a spectrum on the universe U�U. To get a spectrum on U we can choose
an isomorphism U � U�U, but this involves a choice. The space of all choices is
contractible, though, so in some sense the choice doesn’t matter. But if we want a
smash product that is commutative and associative on the point-set level, we can’t
a�ord to make a single choice.
To get around this, one adopts a deÆnition that builds all the choices in from the

beginning. An EKMM-spectrum is (approximately) a coordinate free spectrum that
comes bundled together with its images under all possible change-of-universes. The
smash product of two such things gives a “bundle” (in a very non-technical sense)
of spectra on U�U, and then changing back to U in all possible ways just creates
another bundle. No choices have been made, but at the expense of introducing extra
complexity into the objects themselves.

It is informative to compare and contrast symmetric spectra (or orthogonal spectra)
with EKMM-spectra. In the former case, the category itself is fairly concrete and easy
to understand. The complexities appear in the model structure, where the Æbrant
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objects and weak equivalences are complicated. In contrast, with EKMM-spectra all
the complexity is built into the objects themselves. They are “Øabby” enough that in
fact they turn out to all be Æbrant in the model structure, and the weak equivalences
are quite simple to understand.

1.9.1 Outline for the EKMM approach

Fix a May universe U, by which we mean a real inner product space isomorphic to
R1 with the dot product. For subspaces V ✓W ✓ U write W �V for the orthogonal
complement of V in W . Let SV be the one-point compactiÆcation of V , and for X a
pointed space write ⌦VX for the pointed function space F⇤(SV ,X).

It is important to understand that the machinery we describe below was developed
over a long time in the works of May and his collaborators. We note especially [30],
[17], and [18], but there are plenty of precursors in [9] and [41] as well.

(1) A prespectrum is an assignment V 7! EV that sends Ænite-dimensional subspaces
of U to pointed spaces, together with given suspension maps SW�V ^EV ! EW
for every pair V ✓W . These suspension maps must satisfy an evident associativity
condition and be equal to the identity when V =W . Write PU for the category of
prespectra on U, with the evident maps.

(2) A spectrum is a prespectrum where the adjoints EV !⌦W�V EW are homeomor-
phisms. Write SU for the category of spectra on U.

(3) There are adjoint functors L : PU� SU : i where the right adjoint i is the evident
inclusion. The functor L is called “spectriÆcation”. (This functor is more mysterious
than one might Ærst guess, and having control over colimits in SU is entirely
dependent on having a good working knowledge of L as provided by Lewis in [30,
Appendix].)

(4) For universes U, U0 there is an external smash product ^pre : SU⇥SU0 ! P(U�U0)
deÆned as follows. For M and N in SU, deÆne

(M ^pre N )(V �V 0) =MV ^NV 0 .

This only deÆnes M^pre N on subspaces of U�U of the form V �V 0 , but these are
coÆnal amongst all subspaces; so extendM^preN to all subspaces in any reasonable
way. For example, this can be done inductively on the dimension: given an arbitrary
Ænite-dimensional subspace W ✓ U, choose V and V 0 such that W ✓ V �V 0 and
deÆne

(M ^pre N )(W ) =⌦(V�V 0)�W (MV ^NV 0 ).

Finally, deÆne the external smash product ^ext : SU⇥ SU0 ! S(U�U0) by

M ^ext N = L(M ^pre N ).

Although the deÆnition of M ^pre N depends on choices, those choices get ironed
out by the spectriÆcation functor L and one can check that M^ext N is well-deÆned.
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(5) [Change of Universe] By an isometry f : U ! U0 we mean a linear isometric
embedding (so not necessarily surjective). Given an isometry f : U! U0 and a
spectrum M on U0 , there is an induced spectrum f ⇤M given by V 7!Mf (V ). It
turns out that the functor f ⇤ : SU0 ! SU has a left adjoint f⇤, deÆned as follows.
For W ✓ U0 write Wf = W \ im(f ). For a spectrum E deÆned on U, deÆne a
prespectrum f

pre
⇤ E by

(f pre
⇤ E)(W ) = SW�Wf ^Ef �1(Wf ).

We leave the reader the pleasant exercise of working out the structure maps. Then
deÆne f⇤M = L(f pre

⇤ M). See [30, II.1] for more details.
(6) Let I (U,U0) denote the space of linear isometries from U to U0 . This is a contractible

space. One would therefore hope that if f ,g 2 I (U,U0) and E is a spectrum on
U then f⇤E and g⇤E are weakly equivalence spectra on U0 . This is not known
in general, but there are a special class of spectra where it does hold. DeÆne a
spectrum E to be ⌃-coÆbrant if the structure maps SW ^ EV ! EV�W are all
coÆbrations, and deÆne E to be tame if it is homotopy equivalent to a ⌃-coÆbrant
spectrum. It is known that if E is tame then f⇤E and g⇤E are homotopy equivalent
[18, I.2.5]. We will need to study all of these di�erent pushforwards at once.

(7) Given a space A, a map ↵ : A ! I (U,U0), and a spectrum E on U, there is a
construction AnE which is a spectrum on U0 . It is called the “twisted half-smash
product”. It depends on ↵, but this is omitted from the notation. Loosely speaking,
AnE contains all the ways of constructing a pushforward of E from U to U0 , as
parameterized by the map ↵, all bundled together. When A is contractible and E is
tame, this has the same homotopy type as the simple pushforwards f⇤E.

(8) Write L(j) = I (Uj ,U) where Uj is the direct sum of j copies of U. The spaces L(j)
together form an operad L, called the linear isometries operad.

(9) Let L : SU ! SU denote the monad L(E) = L(1) n E. The composition map
L(1) ⇥L(1)! L(1) induces the natural transformation µ : LLE ! LE, and the
identity element id 2 L(1) induces the unit ⌘ : E! LE.

(10) An L-spectrum is an L-algebra: that is, an L-spectrum is a spectrum X together
with a map LX! X making the usual diagrams commute.

(11) Given L-spectra M and N , we deÆne the smash product by

M ^LN = L(2)nL(1)⇥L(1) (M ^ext N ).

Note thatM^extN is a spectrum on U2. The object on the right in the above formula
is a coequalizer of certain evident maps coming from the L-algebra structures on
M and N and the operad maps in L. The smash product ^L turns out to be
associative and symmetric (see [18, I.5]), but not unital.

(12) The sphere spectrum S is the spectriÆcation of the prespectrum V 7! SV . It turns
out that S is an L-algebra in a natural way, and that for any L-spectrum M there is a
natural map �M : S^LM!M . DeÆne an EKMM-spectrum to be an L-spectrum
M for which �M is an isomorphism. Denote the category of EKMM-spectra by
EKMMS . The spectrum S is itself an EKMM spectrum.
Note: EKMM-spectra are called “S-modules” in [18]. While not a terrible name,
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it conØicts with the notions of S-modules that one has in other categories like
symmetric spectra and orthogonal spectra. The name “EKMM-spectra” seems to
lead to less confusion.

(13) Given two EKMM-spectraM and N , their smash product is deÆned to beM^SN =
M ^LN . This gives a symmetric monoidal smash product on EKMMS with unit S .

(14) Now suppress the universe and abbreviate SU to just S. There are adjunctions

S
L(�) // (L�Spectra)

S^L(�) //
U

oo EKMMS
FL(S,�)
oo

where U is the forgetful functor and the left adjoints both point left to right.
(15) For each V ✓ U, the evaluation map EvV : S! Top⇤ has a left adjoint denoted FV .

We also write ⌃1 for the functor F0.
(16) For a map f in S, say that f is a weak equivalence if and only if f is a ⇡⇤-

isomorphism on underlying spectra. Recall that the objects of S are all ⌦-spectra,
so we can also characterize the weak equivalences as maps inducing objectwise
weak equivalences in Top⇤ on application of fV (for all V ).

If i : EKMMS ,! L�Spectra denotes the inclusion then for any M in EKMMS
there is a canonical map iM ! FL(S,M) and this map is always a weak equiv-
alence. So up to homotopy the functors i and FL(S,�) are really the same; as a
consequence, a map in EKMMS is a weak equivalence if and only if FL(S,�) is a
weak equivalence.

Say that f is a Æbration if and only if it has the right lifting property with respect
to all maps Fn(Ik ⇥ {0})! Fn(Ik ^ I+), for all n and k.

Then S has a model category structure with the above-deÆned weak equivalences
and Æbrations, and moreover the right adjoints U and FL(S,�) create induced
model category structures on L�Spectra and EKMMS . Note that since all objects
are Æbrant in Top⇤, the same holds in each of the categories S, L�Spectra, and
EKMMS .

Moreover, the two pairs of adjoint functors from (14) are both Quillen equivalences.
(17) For any pointed space X we deÆne

⌃1S X = S ^L
⇣

L(⌃1X)
⌘

.

Note that this is just the composite of the left adjoints in the diagram

Top⇤
⌃1 // S
Ev0

oo
L(�) // (L�Spectra)

S^L(�) //
U

oo EKMMS
FL(S,�)
oo

and so in particular is a left Quillen functor. Write ⌦1S for the composition of the
right adjoints in the above diagram. For n � 0 write

Sn
S = ⌃1S (Sn) = S ^L (L(⌃1Sn)).

We regard Sn
S as a “stable n-sphere”, and from this we can deÆne the notion of

CW -spectra for EKMMS in the usual way. Such spectra will all be coÆbrant.
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(18) Now we come to a major point. We have the object S = ⌃1S0, which is an EKMM-
spectrum (see (12)) and the unit for the smash product. But we also have the stable
0-sphere S0

S = ⌃1S S0 = S ^L LS . The L-algebra structure on S is a map LS ! S ,
which induces the canonical map

S0
S = S ^L LS! S ^L S = S.

This map is a weak equivalence, but it is NOT an isomorphism. In fact it turns out
that S is not coÆbrant in EKMMS , and so S0

S is a coÆbrant-replacement for S .
The fact that S is not coÆbrant, and the distinction between S0

S and S , is one
of the major di�erences between EKMM-spectra and symmetric (or orthogonal)
spectra.

(19) For any pointed space X , the spectrum ⌃1X (from (15) above) turns out to be an
L-spectrum in a natural way and also an EKMM-spectrum. So we can think of ⌃1

as a functor Top⇤ ! EKMMS . It has a right adjoint ⌦1. It is dangerous to confuse
⌃1S and ⌃1. Note that the Ærst is a left Quillen functor, but the second is not. We
have the comparison map

⌃1S X = S ^L L(⌃1X) �! S ^L ⌃1X � ⌃1X

with the middle map coming from the L-structure on ⌃1X , and the last iso-
morphism being because ⌃1X is an S-module. This comparison map is a weak
equivalence whenever X is nondegenerately based (i.e. ⇤ ! X is a coÆbration).
The functor ⌃1 has good monoidal properties, for example a natural isomor-

phism ⌃1(X ^Y ) � (⌃1X)^S (⌃1Y ) compatible with associativity and commuta-
tivity isomorphisms.

The work in [18] shows the following:

Theorem 1.9.1. The category EKMMS is a stable, closed symmetric monoidal model
category satisfying the Algebraic Creation and Invariance Properties as well as the Strong
Flatness Property. As a model category it is Quillen equivalent to the stable projective model
structure on SpN.

Proof We sketch a proof here, since there seems to be no simple reference where this
can be just looked up. Let Fn : Top⇤ ! EKMMS be the functor Fn(X) = S^LLFn(X).
In [18] the closed symmetric monoidal structure is established, as well as the

model structure. The latter comes with the set {Fm(Sn)! Fm(Dn+1) |m,n � 0} of
generating coÆbrations and set {Fm(Dn)! Fm(Dn^I+) |m,n � 0} of generating trivial
coÆbrations (see [18, VII.5.6–5.8]).

To prove the Pushout-Product Axiom, it su�ces to check this on generating coÆbra-
tions and trivial coÆbrations. So we need to analyze the box product of Fm(f ) and
Fn(g) for f : A⇢ B and g : C⇢D coÆbrations in Top⇤. The key point is then that
a choice of homeomorphism U2 � U induces a homeomorphism L(2) � L(1) and
thus an identiÆcation Fm(f )⇤Fn(g) � Fm+n(f ⇤g); the Pushout-Product Axiom then
follows. (See [5, 4.21] for a version of this argument in the context of spaces.)

There is a canonical map LS! S , and the induced map ↵ : S^LLS! S^LS � S
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is a coÆbrant-approximation in EKMMS . Note that the domain is ⌃1S (S0). We must
show for anyM in EKMMS that (S^LLS)^SM! S^SM =M is a weak equivalence.
Remembering that ^S = ^L, consider the diagram

S ^L LS ^LM
µLS^idM //

✏✏

LS ^LM

✏✏

g // M

S ^L S ^LM �
µS^idM

// S ^LM
�

88

The diagonal map is an isomorphism by the deÆnition of EKMMS . The map g is a
weak equivalence by [18, I.6.2], and µLS ^ idM is a weak equivalence by [18, I.8.5(iii)].
It follows that every map in the diagram is a weak equivalence, and this veriÆes the
Unit Axiom in the deÆnition of monoidal model category. It also veriÆes condition (1)
in Proposition 1.3.6.

Condition (2) of Proposition 1.3.6 also holds, since EKMMS is a topological model
category where all objects are Æbrant. So Proposition 1.3.6 yields the Algebraic Creation
Property.
The Strong Flatness Property follows from [18, III.3.8] together with the fact that

every coÆbrant R-module is a retract of a cell-module. For the Algebraic Invariance
Property we verify the conditions of Proposition 1.3.9: condition (1) is the Strong
Flatness Property, and condition (2) is [18, VII.6.2].

For the Quillen equivalence between EKMMS and SpN, it is easiest to go through
SpO or Sp⌃. The Quillen equivalence with SpO is in [37], and the equivalence with
Sp⌃ is in [48].

1.10 Afterthoughts

One of the drawbacks of a survey like this is that there is never enough time or space
to say everything that one would like. This Ænal section will give a blitz treatment of
various topics that are important and should not go unmentioned.

1.10.1 Functors with smash product

This was an early attempt at a strict model for ring spectra, due to Bökstedt and used
by him in his work on topological Hochschild homology. In modern times these have
been eclipsed by ring objects in either symmetric or orthogonal spectra, but it is still
good to know the basic idea.
Let W be the category of pointed spaces that are homeomorphic to a Ænite CW -

complex, Regard W as a Top⇤-enriched category. A W-sequence is an enriched
functor W! Top⇤ (these are also called W-spaces sometimes). Day convolution—as
in (1.7.9)—gives a symmetric monoidal product on W-sequences.
There is a “sphere sequence” S given by the inclusion W ,! Top⇤, and this is a
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commutative monoid. We deÆne a W-spectrum to be a left S-module. Unraveling
this, a W-spectrum is an enriched functor � : W ! Top⇤ together with structure
maps X ^�(Y )!�(X ^Y ) satisfying unital and associativity conditions. However,
these extra structure maps do not provide new information—they are an automatic
consequence of being an enriched functor, as was explained back in Section 1.1. So in
this case W-sequences and W-spectra are the same thing.
Note that there is a functor OI !W given by V 7! SV , and restriction along this

functor takes W-spectra to orthogonal spectra. One can restrict further along the
composite ⌃I ! OI !W to get a symmetric spectrum.

The model category story works out in the same way as for orthogonal spectra. See
[38].
A “functor with smash product” (FSP) is a monoid in the category of W-spectra.

This amounts to an enriched functor � : W! Top⇤ equipped with maps X!�(X)
and �(X)^�(Y )!�(X ^Y ) satisfying various properties that are not hard to work
out.

Remark 1.10.1. We saw in Section 1.1.2 that the notion of a classical spectrum comes
from the idea of “remembering” the mapping spaces En =Map(S�n,E) for a fantasy
stable object E. In a similar vein, a pointed Ænite CW-complex X should give rise to
a stable object ⌃1X , which should have a Spanier-Whitehead dual (⌃1X)⇤. The idea
of W-spectra is that they “remember” the mapping spaces E(X) = Map((⌃1X)⇤,E).

We remark that the notion of W-sequence is essentially equivalent (homotopically
speaking) to the notion of a simplicial functor from sSet to sSet. The connection
between these kinds of functors and spectra was initially raised by Anderson [3].
Lydakis [34] Ærst produced (in the simplicial setting) a model category structure
as well as the symmetric monoidal product, showed the Quillen equivalence with
BousÆeld-Friedlander spectra, and identiÆed the ring objects with Bökstedt’s FSPs.

1.10.2 �-spaces

Let �op be the category of Ænite based sets n+ = {0,1, . . . ,n} (based at 0) and based
maps (the category � is of course the opposite category of this). A functor �op! Top⇤
is called a �-space. The smash product of based sets induces a symmetric monoidal
product on �op : speciÆcally, we identify m+^n+ with (m ·n)+ using the lexicographic
ordering. Day convolution then gives a monoidal stucture on the category of �-spaces.
�-spaces were introduced by Segal [53], who showed that the homotopy category

is equivalent to the full subcategory of the stable homotopy category consisting of
the connective spectra. The Ærst model category structure on �-spaces goes back to
BousÆeld-Friedlander [7] (note that no such model category could be stable, given that
the suspension functor on the homotopy category is not an equivalence). Lydakis [35]
introduced the symmetric monoidal product on �-spaces and showed that it models
the smash product of spectra, and [50] produced a model category structure on the
ring objects. See also the discussion in [38].
The idea behind �-spaces comes from considerations similar to those in Re-
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mark 1.10.1. In any homotopy theory of spectra we would have objects ⌃1T for every
pointed set T (note that this will just be a wedge of copies of the sphere spectrum S ,
indexed by the non-basepoints in T ). Therefore we would also have Spanier-Whitehead
duals (⌃1T )⇤. The assignment T 7! (⌃1T )⇤ would be a contravariant functor de-
Æned on �op , and for a stable object E the assignment T 7!Map((⌃1T )⇤,E) would
therefore be a �-space.
If T = [n] then ⌃1T = _ni=1S , and so (⌃1T )⇤ can be identiÆed with the product

Qn
i=1 S (using that S⇤ = S ). So another way to say the above is that a �-space comes

from remembering what a spectrum looks like through the eyes of the Ænite products
⇤, S , S ⇥ S , S ⇥ S ⇥ S , and so forth. That is to say, if E is a spectrum we remember
[n] 7! En =Map(S⇥n,E). As Ænite products are weakly equivalent to Ænite wedges in
spectra, it’s clear that this data can only remember the connective part of a spectrum.
In fact, since

Qn
i=1 S ' _ni=1S we would additionally have the relations

En =Map(
Qn

i=1S,E) 'Map(_ni=1S,E) '
Qn

i=1Map(S,E) =
Qn

i=1E1.

This suggests that what we really care about are �-spaces X such that a canonical
map Xn!

Qn
i=1X1 is an equivalence (and when n = 0 this should be interpreted as

X0 ' ⇤). These were called “special” �-spaces in [7]. This turns out to equip ⇡0(X1)
with the structure of an abelian monoid via the multiplication

⇡0(X1)⇥⇡0(X1)
� � ⇡0(X2)

µ�! ⇡0(X1)

where µ is induced by the map [2]+! [1]+ sending 1,2 7! 1. But if X1 = Map(S,E)
then we should have X1 '⌦2Map(S�2,E) which means ⇡0(X1) would actually be an
abelian group. Adding on this condition yields what [7] called “very special” �-spaces.
The pleasant surprise is that there are no further “relations” that one has to keep
track of here: that is, the model category structure on �-spaces is set up so that the
Æbrant objects are precisely these very special �-spaces, and this is enough to get the
Quillen equivalence with connective spectra. See also [13, Example 5.7] for another
perspective on these “relations”.
The inclusion of categories �op ,!W (regarding every pointed set as a discrete

topological space) yields comparison functors between W-spaces and �-spaces in the
usual way (see Remark 1.5.3).

Segal introduced �-spaces in [53] because they were a natural receptor for a certain
version of algebraic K-theory. We outline this brieØy. Let C be a category with Ænite
coproducts. For a Ænite set T write P(T ) for the category whose elements are the
subsets of T and whose maps are subset inclusions. Let C(T ) be the category whose
objects are functors F : P(T )! C having the property that whenever A1, . . . ,An ✓ T
are disjoint the set of maps {F(Ai )! F([iAi )} induces an isomorphism

a

i

F(Ai )
��! F([iAi ).

Note that when n = 0 this property implies that F(;) is an initial object in C.
If T is a pointed set, let (KC)(T ) = BC(T � ⇤) where B(�) denotes the usual



76 Stable categories and spectra via model categories

classifying space of a small category (i.e., the geometric realization of the nerve). If
f : T !U is a map of pointed sets then there is an induced map P(U �⇤)! P(T �⇤)
sending A 7! f �1(A)\ (T �⇤), and this in turn induces a functor C(T �⇤)! C(U �⇤).
So KC is a �-space. (Observe that the basepoint is playing the role of a “sink” here, in
the sense that pointed maps f : T !U are the same as pairs (A ✓ T ,A!U ), where
in the correspondence one has T �A = f �1(⇤). The reader is advised to work out the
maps in KC where T and U are {0,1} and {0,1,2}—in either order—to get a feeling
for what is happening here.)
Note that an object in C(T ) can be thought of as a T -indexed collection of objects

in C together with consistent choices of coproducts for all subsets of T . Compare the
description of Waldhausen K-theory from Section 1.8.8.

1.10.3 Spectra in other settings

Let M be a symmetric monoidal model category and let K be a coÆbrant object.
Just as spectra stablize Top⇤ under the operation of smashing with S1, one might
want to stabilize M under the operation of tensoring with K . Under mild “su�ciently-
combinatorial” hypotheses on M, this works out just Æne. Hovey [25] showed that one
can form both BousÆeld-Friedlander and symmetric spectra in this generalized setting,
and all the basic model structures work out just as expected.
Standard applications include stabilizing the model category of G-spaces along a

representation sphere SV , or stabilizing a model category of motivic spaces along the
motivic sphere S2,1.
Hovey in fact showed that the BousÆeld-Friedlander construction is really about

inverting a functor G : M ! M, whereas (as we have discussed in Section 1.7.4)
the symmetric spectrum construction is about making an object invertible in the
symmetric monoidal sense. This di�erence has consequences for the comparison of
the two constructions SpN,^K and Sp⌃,K . In the latter, the suspension spectrum of
K is an invertible object and so must satisfy the cyclic permutation condition (1.3.13).
In the former, where we are only inverting the functor (�)^K and don’t necessarily
have a monoidal product around anymore, there is no guarantee that this holds. So
there is no reason to suspect a Quillen equivalence here: in general, Sp⌃,K has more
“relations” than SpN,^K . Hovey [25] has some results showing that in the presence of
the cyclic permutation condition these two constructions are Quillen equivalent, but
he also observes that the results are perhaps not as general as one would like.

A version of W-spaces (or simplicial functors) for model categories satisfying certain
technical hypotheses has also been developed, by Dundas-Röndigs-Østvaer [14].

1.10.4 G-spectra

Let G be a compact Lie group, but feel free to think only of a Ænite group if one
desires. There should of course be a model category of genuine G-spectra, where one
stabilizes with respect to all Ænite-dimensional representation spheres. The associated
homotopy category was Ærst developed in [30], and is nicely summarized in [40].
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To construct an appropriate model category via symmetric spectra, one could pick
representatives V1,V2, . . . ,Vn for all Ænite-dimensional irreducible G-representations
and set V = V1� · · ·�Vn. Performing the symmetric spectra construction on G-spaces
using the object SV makes a perfectly good model category of genuine G-spectra.
Although this is Æne for some purposes, it is a little unnatural. The fact that all
Ænite-dimensional G-representations aren’t inherently built into the machinery can
make some things more trouble than they should be.
The construction of orthogonal spectra works “right out of the box” for G-spaces,

requiring only the obvious modiÆcations. See [37] or [22, Appendix A] for details.
Currently this is the preferred setting for G-equivariant spectra.
The equivariant version of EKMM spectra is developed in [37]. Here one starts

with a G-universe U that is “complete” in the sense that it contains inÆnitely many
copies of every irreducible representation. One of the surprises is that there are two
naturally arising model category structures on G-equivariant EKMM-spectra, both
having the same notion of stable weak equivalence. One has coÆbrations built from
cellular inclusions based on cells of the form Fn(G/H+ ^ Sk) for n,k � 0, and the
other has coÆbrations built from cells of the form FV (G/H+^Sk) with k � 0 and V a
G-representation. These model structures are Quillen equivalent, but di�erent. We
refer to [37, Chapter IV.2] for details.
When G is Ænite, versions of equivariant symmetric spectra have been produced

by Mandell [39] and Hausmann [20]. Ostermayr [42] developed a model structure
for equivariant �-spaces. A model category structure for an equivariant version of
W-spaces is developed in [14].

1.10.5 Model categories for commutative algebras

Let (Spectra,^,S) be a closed symmetric monoidal model category of spectra that
satisÆes the Algebraic Creation Property. Let R be a commutative ring spectrum, and
write R�ComAlg for the category of commutative R-algebras. The forgetful functor
U : R�ComAlg! R�Mod has a left adjoint Sym given by the symmetric algebra
functor

Sym(M) = R_M _ (M ^R M)/⌃2 _ (M ^R M ^R M)/⌃3 _ . . .
We can ask if the forgetful functor creates a model structure on R�ComAlg.

In EKMMS , this works with no trouble—in part because all objects are Æbrant. See
[18, pp. VII.4.7–4.10]. In contrast, for symmetric and orthogonal spectra there is a
di�culty and such a model structure cannot exist in general. For example, it cannot
exist when R = S : as we saw in Section 1.1.7, there cannot exist a commutative ring
spectrum that is weakly equivalent to S and whose underlying spectrum is Æbrant.
One solution to this problem is via something called the positive model structure

on symmetric (or orthogonal) spectra, suggested originally by Je� Smith. Basically,
go back and mimic the development of the level and stable structures but remove
all references to what happens in level 0. Change the levelwise weak equivalences to
maps that are weak equivalences in levels greater than zero, and so forth. The Æbrant
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objects in the positive stable model structure are then spectra X with the property
that Xn ! ⌦Xn+1 is a weak equivalence for all n � 1 (these are called “positive
⌦-spectra”). This model structure is Quillen equivalent to the model structure we
already had, and it is also monoidal and satisÆes all the nice properties we are used
to.

The adjoint to the ⌃1 functor is Ev0 just as always, but note that Ev0 no longer has
the behavior of ⌦1 for Æbrant objects. So there is no problem with having a model for
S that is a commutative ring spectrum and is Æbrant in the positive model structure.

The positive model structures on symmetric and orthogonal spectra are developed
in [38], which also shows that if one uses these structures the forgetful functor does
create a model structure on R�ComAlg for any commutative ring spectrum R.
For more work related to these issues, including yet another model structure on

symmetric spectra, see [54].
As another application, the positive model structure on Sp⌃ is used in [48] to get a

monoidal Quillen equivalence between Sp⌃ and EKMMS .
Commutative ring spectra are discussed in more detail in Chapter ?? of this volume.

1.10.6 Stable categories and categories of modules

This is only a very brief remark, but if you want to better understand stable model
categories in general and how they interact with the modern monoidal categories of
spectra, go read [51]. That paper provides a basic technique that is pervasive in how
we approach these categories.
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[16] W. G. Dwyer and J. Spaliński. “Homotopy theories and model categories”. In:
Handbook of algebraic topology. North-Holland, Amsterdam, 1995, pp. 73–126.

[17] A. D. Elmendorf. “The Grassmannian geometry of spectra”. In: J. Pure Appl.
Algebra 54.1 (1988), pp. 37–94. issn: 0022-4049.

[18] A. D. Elmendorf et al. Rings, modules, and algebras in stable homotopy theory.
Vol. 47. Mathematical Surveys and Monographs. With an appendix by M. Cole.
American Mathematical Society, Providence, RI, 1997, pp. xii+249. isbn: 0-
8218-0638-6.

[19] Thomas Geisser and Lars Hesselholt. “Topological cyclic homology of schemes”.
In: Algebraic K -theory (Seattle, WA, 1997). Vol. 67. Proc. Sympos. Pure Math.
Amer. Math. Soc., Providence, RI, 1999, pp. 41–87.

[20] Markus Hausmann. “G-symmetric spectra, semistability and the multiplicative
norm”. In: J. Pure Appl. Algebra 221.10 (2017), pp. 2582–2632. issn: 0022-4049.

[21] Alex Heller. “Homotopy Theories”. In: Mem. Amer. Math. Soc. 71.383 (1988),
pp. vi+78. issn: 0065-9266.

[22] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. “On the nonexistence of elements
of Kervaire invariant one”. In: Ann. of Math. (2) 184.1 (2016), pp. 1–262. issn:
0003-486X.

[23] Philip S. Hirschhorn. Model categories and their localizations. Vol. 99. Mathemat-
ical Surveys and Monographs. American Mathematical Society, Providence, RI,
2003, pp. xvi+457. isbn: 0-8218-3279-4.

[24] Mark Hovey. Model categories. Vol. 63. Mathematical Surveys and Monographs.
American Mathematical Society, Providence, RI, 1999, pp. xii+209. isbn: 0-
8218-1359-5.

[25] Mark Hovey. “Spectra and symmetric spectra in general model categories”. In:
J. Pure Appl. Algebra 165.1 (2001), pp. 63–127. issn: 0022-4049.

[26] Mark Hovey, Brooke Shipley, and Je� Smith. “Symmetric spectra”. In: J. Amer.
Math. Soc. 13.1 (2000), pp. 149–208. issn: 0894-0347.

[27] J. F. Jardine. “Simplicial presheaves”. In: Jour. Pure. Appl. Algebra 47 (1987),
pp. 35–87.

[28] Michael Joachim. “A symmetric ring spectrum representing KO-theory”. In:
Topology 40.2 (2001), pp. 299–308. issn: 0040-9383.

[29] Gregory Maxwell Kelly. Basic concepts of enriched category theory. Vol. 64. Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge-New York, 1982, p. 245. isbn: 0-521-28702-2.

[30] L. G. Lewis Jr. et al. Equivariant stable homotopy theory. Vol. 1213. Lecture Notes
in Mathematics. With contributions by J. E. McClure. Springer-Verlag, Berlin,
1986, pp. x+538. isbn: 3-540-16820-6.



BIBLIOGRAPHY 81

[31] L. Gaunce Lewis Jr. “Is there a convenient category of spectra?” In: J. Pure Appl.
Algebra 73.3 (1991), pp. 233–246. issn: 0022-4049.

[32] L. Gaunce Lewis Jr. and Michael A. Mandell. “Modules in monoidal model
categories”. In: J. Pure Appl. Algebra 210.2 (2007), pp. 395–421. issn: 0022-4049.

[33] Elon L. Lima. “The Spanier-Whitehead duality in new homotopy categories”.
In: Summa Brasil. Math. 4 (1959), 91–148 (1959). issn: 0039-498X.

[34] Manos Lydakis. Simplicial functors and stable homotopy theory. Preprint. 1998.
url: http://hopf.math.purdue.edu/Lydakis/s_functors.pdf.

[35] Manos Lydakis. “Smash products and �-spaces”. In: Math. Proc. Cambridge Phi-
los. Soc. 126.2 (1999), pp. 311–328. issn: 0305-0041. doi: 10.1017/S0305004198003260.
url: https://doi.org/10.1017/S0305004198003260.

[36] Saunders MacLane. Categories for the working mathematician. Graduate Texts in
Mathematics, Vol. 5. Springer-Verlag, New York-Berlin, 1971, pp. ix+262.

[37] M. A. Mandell and J. P. May. “Equivariant orthogonal spectra and S-modules”.
In: Mem. Amer. Math. Soc. 159.755 (2002), pp. x+108. issn: 0065-9266.

[38] M. A. Mandell et al. “Model categories of diagram spectra”. In: Proc. London
Math. Soc. (3) 82.2 (2001), pp. 441–512. issn: 0024-6115.

[39] Michael A. Mandell. “Equivariant symmetric spectra”. In: Homotopy theory: rela-
tions with algebraic geometry, group cohomology, and algebraic K -theory. Vol. 346.
Contemp. Math. Amer. Math. Soc., Providence, RI, 2004, pp. 399–452.

[40] J. P. May. Equivariant homotopy and cohomology theory. Vol. 91. CBMS Re-
gional Conference Series in Mathematics. With contributions by M. Cole, G.
Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis,
Jr., R. J. Piacenza, G. TriantaÆllou, and S. Waner. Published for the Confer-
ence Board of the Mathematical Sciences, Washington, DC; by the American
Mathematical Society, Providence, RI, 1996, pp. xiv+366. isbn: 0-8218-0319-0.

[41] J. Peter May. E1 ring spaces and E1 ring spectra. Lecture Notes in Mathematics,
Vol. 577. With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave.
Springer-Verlag, Berlin-New York, 1977, p. 268.

[42] Dominik Ostermayr. “Equivariant �-spaces”. In: Homology Homotopy Appl. 18.1
(2016), pp. 295–324. issn: 1532-0073.

[43] Maximilien Péroux and Brooke Shipley. “Coalgebras in symmetric monoidal
categories of spectra”. In: Homology Homotopy Appl. 21.1 (2019), pp. 1–18. issn:
1532-0073.

[44] Daniel Quillen. “Higher algebraic K-theory. I”. In: Algebraic K -theory, I: Higher
K -theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972). 1973, 85–147.
Lecture Notes in Math., Vol. 341.

[45] Daniel G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43.
Springer-Verlag, Berlin-New York, 1967, iv+156 pp. (not consecutively paged).

[46] C. L. Reedy. Homotopy theory of model categories. 1974. url: ftp://hopf.math.
purdue.edu/pub/Reedy/reedy.dvi.

[47] Alan Robinson. “Spectral sheaves: a model category for stable homotopy the-
ory”. In: J. Pure Appl. Algebra 45.2 (1987), pp. 171–200. issn: 0022-4049.



82 BIBLIOGRAPHY

[48] Stefan Schwede. “S-modules and symmetric spectra”. In: Math. Ann. 319.3
(2001), pp. 517–532. issn: 0025-5831.

[49] Stefan Schwede. “On the homotopy groups of symmetric spectra”. In: Geom.
Topol. 12.3 (2008), pp. 1313–1344. issn: 1465-3060.

[50] Stefan Schwede. “Stable homotopical algebra and �-spaces”. In: Math. Proc.
Cambridge Philos. Soc. 126.2 (1999), pp. 329–356. issn: 0305-0041.

[51] Stefan Schwede and Brooke Shipley. “Stable model categories are categories of
modules”. In: Topology 42.1 (2003), pp. 103–153. issn: 0040-9383.

[52] Stefan Schwede and Brooke E. Shipley. “Algebras and modules in monoidal
model categories”. In: Proc. London Math. Soc. (3) 80.2 (2000), pp. 491–511. issn:
0024-6115.

[53] Graeme Segal. “Categories and cohomology theories”. In: Topology 13 (1974),
pp. 293–312. issn: 0040-9383.

[54] Brooke Shipley. “A convenient model category for commutative ring spectra”.
In: Homotopy theory: relations with algebraic geometry, group cohomology, and
algebraic K -theory. Vol. 346. Contemp. Math. Amer. Math. Soc., Providence, RI,
2004, pp. 473–483.

[55] Robert M. Switzer. Algebraic topology—homotopy and homology. Classics in Math-
ematics. Reprint of the 1975 original [Springer, New York; MR0385836 (52
#6695)]. Springer-Verlag, Berlin, 2002, pp. xiv+526. isbn: 3-540-42750-3.

[56] Vladimir Voevodsky. “A1-homotopy theory”. In: Proceedings of the International
Congress of Mathematicians, Vol. I (Berlin, 1998). Extra Vol. I. 1998, pp. 579–604.

[57] Charles A. Weibel. An Introduction to Homological Algebra. Vol. 38. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1994, pp. xiv+450. isbn: 0-521-43500-5; 0-521-55987-1.


	List of contributors
	Stable categories and spectra via model categories
	Introduction
	Stable model categories
	Monoidal machinery
	Spectra for Sulu and Chekov
	Diagram categories and spectra
	Localization and the stable model structures on spectra
	Symmetric spectra
	Orthogonal spectra
	EKMM spectra
	Afterthoughts

	Bibliography
	Index

