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Stationary and singular points

Definition 1. A number x in the domain of a function

f(x) is a stationary number if f ′(x) = 0 and is a singular

number if the derivative at x does not exist.

Example 2. Find all the stationary points for the

function f(x) = x3 − 9
2x

2 + 2x − 5. Find all the singular

points of the function g(x) = |5 + 4x − x2|. Graph these

functions and say what you see at critical points.
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Relative extrema

We see that if a function changes from increasing to

decreasing at a stationary or singular point, that function

obtains some kind of maximum (there is a similar

statement of minima, which you should think about).

We now formalize this.
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Definition 4. Let P = (c, f(c)) be a critical point of a

function f(x).

• P is a relative maximum if f ′(x) > 0 for nearby x < c

and f ′(x) < 0 for nearby x > c.

• P is a relative minimum if f ′(x) < 0 for nearby x < c

and f ′(x) > 0 for nearby x > c.

• P is not a relative extremum if f ′(x) has the same sign

on both sides of c.
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Example 5. Find the relative maxima and minima of the

functions from the previous example.

If we are looking for largest or smallest values of a

function, it often depends on where the function is

defined. In particular, a relative maximum or minimum

can also occur on an endpoint of the domain. For

example, you were shortest at the moment you were

born, so time t = 0 is where your height function has a

minimum.
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Example 8. Classify the critical points of the function

ln(|x2 − 2| + 1) over the interval from −e to e.

Example 9. The revenue from Pet Rocks was

R(t) =
63t − t2

t2 + 63
,

where revenue is measured in millions of dollars and time

is measured in weeks after June 5, 1967. When is the

revenue at its maximum? What is that maximum?


