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Some practice with logarithms, exponential
functions, and the chain rule

Derivative rules are great fun because they can be

combined. Taking the derivative of some functions

requires every rule we know.

Example 1. Take the derivatives of (ex lnx
x2+1 )9 and ln( ex

√
x
)9.



2

Implicit Differentiation

At the beginning of the term, we discussed the usefulness

of functions in describing many different relationships.



2

Implicit Differentiation

At the beginning of the term, we discussed the usefulness

of functions in describing many different relationships.

But we also emphasized that not all relationships are

described by functions.



2

Implicit Differentiation

At the beginning of the term, we discussed the usefulness

of functions in describing many different relationships.

But we also emphasized that not all relationships are

described by functions. For example, in economics supply

and demand are related, but one is not a function of the

other.



2

Implicit Differentiation

At the beginning of the term, we discussed the usefulness

of functions in describing many different relationships.

But we also emphasized that not all relationships are

described by functions. For example, in economics supply

and demand are related, but one is not a function of the

other. In mathematics, the equation x2 + y2 = 25 is one

of the most basic;



2

Implicit Differentiation

At the beginning of the term, we discussed the usefulness

of functions in describing many different relationships.

But we also emphasized that not all relationships are

described by functions. For example, in economics supply

and demand are related, but one is not a function of the

other. In mathematics, the equation x2 + y2 = 25 is one

of the most basic; the points which satisfy it constitute a

circle of radius 5.



2

Implicit Differentiation

At the beginning of the term, we discussed the usefulness

of functions in describing many different relationships.

But we also emphasized that not all relationships are

described by functions. For example, in economics supply

and demand are related, but one is not a function of the

other. In mathematics, the equation x2 + y2 = 25 is one

of the most basic; the points which satisfy it constitute a

circle of radius 5.



3

Amazingly, we can follow rules for taking derivatives to

find the rate of change of one variable with respect to

another in some cases where there is a relationship

between them which is not described by a function.



3

Amazingly, we can follow rules for taking derivatives to

find the rate of change of one variable with respect to

another in some cases where there is a relationship

between them which is not described by a function.

It is best to start with examples and then summarize the

general method as and after we do them.



3

Amazingly, we can follow rules for taking derivatives to

find the rate of change of one variable with respect to

another in some cases where there is a relationship

between them which is not described by a function.

It is best to start with examples and then summarize the

general method as and after we do them.

Example 2. Find the equation of the tangent line to the

circle x2 + y2 = 25 at the point (3, 4).
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We practice with a couple examples before trying to

apply this technique to more complicated problems.

Example 3. • Find du
dv if u and v are related by u3v −

2u2v2 + v4 = 17.

• Find dy
dx when exy+4x−3 = 5x2. (Do this twice, the second

time by taking the natural logarithm of both sides).
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competition. Because of the many variables in pricing and
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the number of widgets sold per day by the first company

and y by the second.
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