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The Derivative

The derivative of a function f at some point x is the

slope of the tangent line to the graph of f at the point

(x, f(x)). We can collect these numbers all together to

make a new function, which we also call the derivative

and which we name f ′. We are about to learn many

formal rules to find this f ′, but before we do that we

should play a game to develop some intuition about the

derivative.

Example 1. The derivative game: given some graphs of
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derivative functions, sketch possible graphs for the original

functions.
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Formula for instantaneous rate of
change - the algebraic viewpoint

Last time we found what the derivative must be by

looking at slopes of secant lines which were close to the

tangent line. One point on the secant line was always

(x, f(x)). The other we chose to be (x + h, f(x + h)),
where we understood that h was meant to be small. The

slope of this secant line would then be
f(x+h)−f(x)

x+h−x = f(x+h)−f(x)
h .

Definition 2. The derivative of f(x) with respect to x
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First rules of differentiation

It would be tedious to compute a difference quotient and

take a limit every time one had to take a derivative, just

as it would be tedious to add 57 to itself 13 times in

order to compute 57× 13. Our next class times will be

devoted to learning efficient ways to compute derivatives.

Just like doing multiplication, there are both some basic

cases to memorize, and some rules to reduce complicated

situations to simpler ones.
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First, it is convenient to use a different name for the

derivative.

Notation 6. The derivative of f(x) is sometimes

denoted by d
dxf(x).

Next, we state a rule which relates for example the

derivatives of x3 and −53x3.

Theorem 7. If g(x) = cf(x) then d
dxg(x) = c d

dx.
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Example 8. If the derivative of f(x) =
√

x is − 1
2
√

x
,

what is the derivative of g(x) = 10
√

x?

This rule can be deduced from the definition of the

derivative, and some rules for limits. Our second rule,

which may be similarly deduced, deals with addition of

functions.
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Theorem 9. d
dx{f(x) + g(x)} = d

dxf(x) + d
dxg(x).
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Theorem 9. d
dx{f(x) + g(x)} = d

dxf(x) + d
dxg(x).

Example 10. What is the derivative of 3x2 + 1
x?
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• Find the derivative of 3x500 − 5.734 + x−500.
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