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Example 1. A shoe maker estimates that the profit for

selling shoes as a function of price (accounting for the

market equilibrium) is −5 + p− p2

40 per shoe. Because of

a price war, the shoe maker estimates that the price will

be 22−
√

t dollars over the next t months. How fast will

his profits changing over in 4 and 9 months?
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The derivative of exponential functions

Looking at the definition of the derivative of ax, we have

lim
h→0

ax+h − ax

h
= lim

h→0

ax[xh − 1]
h

.

But notice that ax has no dependence on h so we can

pull it out of the limit and get ax limh→0
ah−1

h . This last

limit is going to be some constant, independent of x. It

turns out to be equal to ln(a)!
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Theorem 2. The derivative of ax = ln(a)ax. In

particular d
dxe

x = ex.

It is remarkable that the derivative of ex is itself. This is

a special property of exponentiation and the number e.

When we compute a derivative, we should see how our

computation fits with the graph of the function. In the

case of ax, we see that as this function gets larger it

grows faster (and thus gets even larger and grows even

faster...).

Knowing just the derivative of ex allows us to compute
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the derivatives of functions made from ex and

polynomials using the chain, product and quotient rules.

Example 3. Find the derivatives of

• ex2

• 10x

• ex

x

• A(t) = Pert
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The fact that the derivative of erx is r times itself makes

it useful in modeling populations, investments,

temperatures...
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The derivative of the natural logarithm
function

Recall from the properties of logarithm functions that

loga(x) = loga e× lnx. We differentiate lnx, since all

other logarithm functions differ from it by a constant.

Theorem 4. The derivative of ln(x) is 1
x.

We will establish this fact once we learn about implicit

differertiation.
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Note that this fills in a spot which has been missing on

the list of derivatives. In general the derivative of
1

n+1x
n+1 = xn. But this does not work for n = −1. But

in the function ln(x) has derivative x−1.

Again, we should check the behavior of the derivative

with the behavior of the graph.

And again, once we combine with other rules, we can

now go wild taking derivatives of complicated functions.

Example 5. Find the derivatives of the functions
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