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x-axis by solving the equation f(x) = 0.
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the second derivative test to determine which critical

points are local maxima or minima.
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in the regions where the the signs of the first and second

derivative do not change.
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• Check where the sign of the derivative changes or use

the second derivative test to determine which critical

points are local maxima or minima.

• Draw in “cups” at local minima, “caps” at local maxima,

and one of four kinds of curve, as sketched on the board,

in the regions where the the signs of the first and second

derivative do not change.

• Fill in the parts of the graph in between the curves you

have put in.
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Example 1. Sketch the graph of f(x) = 2x3 + 3x2 −
12x− 7,
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Example 1. Sketch the graph of f(x) = 2x3 + 3x2 −
12x− 7, and of xe1−x.
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Related rates

In some problems all quantities in question are functions

of some variable (most often time) but this dependence

is not explicit; only a relationship is known. The

techniques we have used for implicit differentiation can

be used to find the derivative of one quantity if we know

the derivative of the other.

The classic related rates problem, one used to torture

calculus students for as long as the subject has been

taught, is the problem of the ladder.
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into your nightmares.
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Try not to let this problem and its cousins make its way

into your nightmares.

Example 2. A ladder, which is ten feet long, is leaning

against a wall. Its feet begin to slide out from under it,

and its top falls at a constant rate of one foot per second.

How fast is the foot of the ladder moving when the top

of the latter is at 8 feet? What about 4 feet?

The notion of related rates, like that of implicit

differentiation, is based on the fact that taking the

derivative of both sides of a valid equation gives rise to a
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valid equation
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valid equation (as long as the variable with respect to

the derivative is being taken is clear, and that the chain

rule is applied properly).
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Example 3. At ACME Anvils, output is Q = 60K
1
3L

2
3

where K is the capital inverstment (in thousands of

dollars) and L is the size of the labor force, measured in

worker-hours.
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