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If we are looking for largest or smallest values of a
function, it often depends on where the function is
defined. In particular, a relative maximum or minimum
can also occur on an endpoint of the domain. For
example, you were shortest at the moment you were
born, so time ¢t = 0 is where your height function has a
minimum.
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Example 4. C(lassify the critical points of the function
In(|z* — 2| + 1) over the interval from —e to e.
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its largest or smallest values,is the most common
application of calculus. The big theorem which we will
use repeatedly is:

Theorem 5. [First Optimization Theorem] A continuous
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Example 7. Find the maximum and minimum values of
. 2
the function X3 as x can take values from 0 to 5.

x+1
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Applied optimization problems

In applied problems one usually has to work in order to
find a single function to maximize. One needs to keep
track of relationships and constraints.

Example 8. Suppose advertising costs $1000 per unit
(say for magazine adds), and product development costs
$20000 per unit. Suppose that the profits generated from
x units of advertising and y units of product development
are xy* thousands of dollars. If a company has $10000 to
spend on advertising and product development together,
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