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Relative extrema

We see that if a function changes from increasing to

decreasing at a stationary or singular point, that function

obtains some kind of maximum (there is a similar

statement of minima, which you should think about).

We now formalize this.
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Definition 1. Let P = (c, f(c)) be a critical point of a

function f(x).

• P is a relative maximum if f ′(x) > 0 for nearby x < c

and f ′(x) < 0 for nearby x > c.

• P is a relative minimum if f ′(x) < 0 for nearby x < c

and f ′(x) > 0 for nearby x > c.

• P is not a relative extremum if f ′(x) has the same sign

on both sides of c.
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If we are looking for largest or smallest values of a

function, it often depends on where the function is

defined. In particular, a relative maximum or minimum

can also occur on an endpoint of the domain. For

example, you were shortest at the moment you were

born, so time t = 0 is where your height function has a

minimum.
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We now include endpoints of the domain whenever we

refer to critical points (because it is critical to check for

maxima and minima at those points!).

Definition 2. If f is defined only over an interval from

a to b, we say that f has a relative minimum at a if f ′(x)
is positive for values of x close to a. We say that ... (you

fill in the rest!).

Example 3. Classify the critical points (as relative

maxima, relative minima, or neither) of x2−3
ex over the

interval from −4 to 4. Check the answer with the graph.
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Example 4. Classify the critical points of the function

ln(|x2 − 2| + 1) over the interval from −e to e.
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Optimization

Optimization, that is finding where a function takes on

its largest or smallest values,is the most common

application of calculus. The big theorem which we will

use repeatedly is:

Theorem 5. [First Optimization Theorem] A continuous

function defined everywhere on some interval I obtains its

absolute maxima and minima either at the end(s) of I or

at some critical number(s) in I.
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Let’s do an example and then come back and formalize.

Example 6. Maximize profit when the price at which q

units can be sold is p(q) = 25 − q and it costs $10 to

produce each unit.
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What we did was:

• Found all stationary points (by finding the derivative

and setting it to zero).

• Found all singular points.

• Found the endpoints (these are often given).

• Compared values at all of these points - the largest is

the max and the smallest is the min.
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Example 7. Find the maximum and minimum values of

the function x2+3
x+1 as x can take values from 0 to 5.
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Applied optimization problems

In applied problems one usually has to work in order to

find a single function to maximize. One needs to keep

track of relationships and constraints.

Example 8. Suppose advertising costs $1000 per unit

(say for magazine adds), and product development costs

$20000 per unit. Suppose that the profits generated from

x units of advertising and y units of product development

are xy2 thousands of dollars. If a company has $10000 to

spend on advertising and product development together,
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how should the money be allocated in order to maximize

profits?

Example 9. Suppose the top of a can is made of a metal

which costs 10 cents per square centimeter and the sides

are made of a metal which costs 12 cents per square

centimeter.What is the largest volume can which can be

made from two dollars of material?

We will formalize our techniques next time.


