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call a matrix an n by m matrix if it has n rows and m

columns. The example above is a two by two matrix.

We may use matrices to represent and efficiently solve

systems of equations by putting both the coefficients of

the system and the values of the equations in a matrix

and mimicking our usual procedure for solving them.
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Example 4. Translate into matrix notation and solve the

system

x + 2y = 2

x + 3y = 5.

Matrix notation has uses well beyond solving systems.
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Addition and subtraction of matrices obey the same rules

as for numbers.

The zero matrix has zero for all of its entries. Matrices

do not change when the zero matrix is add to or

subtracted from them.

We will see next time that the most natural way to

multiply matrices is not what you would expect.

Some manipulations of matrices are not just translation

from those on numbers.
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Definition 7. The transpose of an n by m matrix M is

the m by n matrix called MT whose i, jth entry is the

j, ith entry of M .

Example 8. The transpose of

[
1 2 3
4 5 6

]
is

1 4
2 5
3 6

.
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· · ·
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 is the sum

a1b1 + a2b2 + · · · anbn.

Note that the dot product of two vectors is not another

vector but a number. The dot product arises in many

contexts, especially geometry.
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