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• f(x, y) = 1
2(x

2 − y2)

• f(x, y) = ex−y.

We can ask many of the same kinds of questions as we

did for single-variable functions, but with some additional

complications. Sometimes we see what are maxima and

minima, but in order to talk about whether the function

is increasing or decreasing, we have to pick a direction. It

is helpful to draw on intuition from hiking, thinking of

the graph as a landscape.
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Example 4. Find the derivative of the function f(x, y) =
xy2 when x = 3, 5,−1, 100,

√
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derivative is always equal to 2xy.

Definition 5. If f(x, y) is a function of two variables,

its partial derivative with respect to x, denoted either ∂f
∂x

or fx(x, y), is the function obtained by treating y as a

constant and differentiating with respect to x. Similarly,

the partial derivative with respect to y, denoted ∂f
∂y or fy,

is obtained by treating x as a constant and differentiating

with respect to y.
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