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The definite integral and the
fundamental theorem of calculus

Today we give an overview of sections 6.3, 6.4 and 6.5

together. We will go over these ideas again more

separately.

Areas naturally correspond to aggregate amounts. If the

bars on a bar graph of profit are of unit width, then the

area of the bar graph represents total profit. We will see

that for a continuous(ly modelled) revenue stream, the

area under the marginal revenue curve represents total
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revenue.

The Fundamental Theorem of Calculus will tell us that

anti-derivative computes area under a curve.

Approximating areas by rectangles

While we do not know how to find areas of regions with

curved boundaries, we do know how to find areas of

regions with straight boundaries, especially rectangles.

We approximate the area of a curved region by trying to

fill it (or cover it, with some “spillage”) with rectangles.

This method for finding curved areas, such as that inside
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a circle, was known to some Greek mathematicians but

was lost until the Renaissance and the (re?)invention of

integral calculus.
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Example 1. Approximate the area under the curve

f(x) = x2 between x = 0 and x = 1 using ten rectangles.

We can see that ten rectangles gives a pretty good fit.

The area of each rectangle is computed as base times

height. Each rectangle has base of 1
10 = 0.1 and the ith

rectangle has height equal to f(0.1 · i). Thus, the total

area is
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0.1(0.1)2 + 0.1(0.2)2 + 0.1(0.3)2 + · · ·+ 0.1(1.0)2

= 0.1
[
(0.1)2 + (0.2)2 + · · ·+ (0.9)2 + (1.0)2]

= 0.1 [0.01 + 0.04 + · · ·+ 0.21 + 1.00]

= 0.1(3.85) = 0.385

We will see soon that the exact answer is 1
3, so this

approximation is not bad (but not spectacularly good

either).
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The general technique is as follows: we find the area

under f(x) between x = a and x = b by approximating it

by N rectangles, each of width b−a
N . We let ∆x = b−a

N to

save writing, and also let xi = a + ∆x · i, the place of

the dividing line between the ith rectangle and the

i + 1st. Then the area of these N rectangles is

f(x1)∆x + f(x2)∆x + · · ·+ f(xN)∆x

= ∆x [f(x1) + f(x2) + · · ·+ f(xN)]
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Question: why would using any anti-derivative give the

same answer when using the Fundamental Theorem?

We will revisit the process of defining the definite

integral as a sum and the Fundamental Theorem in our

next lectures.


