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inequalities: 
x + y ≥ 1

x + y ≤ 3

2x− y < 2

Some basic terminology:

Definition 3. The boundary lines for a system of

inequalities are the lines defining by replacing inequalities

by equalities. The boundary points are points on the

boundary lines which lie next to the solution set. The

corner points of a system are those boundary points which
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One more piece of terminology:

Definition 5. A solution set is bounded if it is contained

in some (larger) rectangle. If there is no such rectangle,

then it is unbounded.

Informally, an unbounded region has points which go to

infinity in some direction.



5

Linear programming



5

Linear programming

Linear programming is the subject of optimizing linear

functions over constraint regions.



5

Linear programming

Linear programming is the subject of optimizing linear

functions over constraint regions. In a single variable, the

theory is a very simple case of problems we studied in

Math 241.



5

Linear programming

Linear programming is the subject of optimizing linear

functions over constraint regions. In a single variable, the

theory is a very simple case of problems we studied in

Math 241.

Example 6. Find the maximum and minimum of the

function f(x) = 2x + 3 over the interval from −1 to 3.



5

Linear programming

Linear programming is the subject of optimizing linear

functions over constraint regions. In a single variable, the

theory is a very simple case of problems we studied in

Math 241.

Example 6. Find the maximum and minimum of the

function f(x) = 2x + 3 over the interval from −1 to 3.

Our results in this example are consistent with what we

saw in optimization of single-variable functions using

calculus.



5

Linear programming

Linear programming is the subject of optimizing linear

functions over constraint regions. In a single variable, the

theory is a very simple case of problems we studied in

Math 241.

Example 6. Find the maximum and minimum of the

function f(x) = 2x + 3 over the interval from −1 to 3.

Our results in this example are consistent with what we

saw in optimization of single-variable functions using

calculus. The main theorem was that maxima and
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minima occurred either at critical points (where the

derivative of the function in question is zero or does not

exist) or at the endpoints of the interval. Since a linear

function has a constant, usually non-zero derivative, the

maxima and minima must occur at the endpoints of the

interval.

Remarkably, the same basic principal applies in many

variables!!
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• Evaluate the objective function at the corner points.

• If the constraint region is bounded, take the biggest and

smallest values at corner points; those are the maxima

and minima, and they are achieved at those corner

points as well as edges which connect optimal corner

points with the same value.

• If the constraint region is unbounded, one must

understand values at boundary points which “go to

infinity”. If these values are greater than the max of

corner values or less than the min of corner values, then
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Example 11. Farmer Lynn raises chickens and goats.

She wants to raise no more than 16 animals, including no

more than 10 chickens. She spends $5 to raise a chicken

and $15 to raise a goat. She has $180 available to spend.

Each chicken generates $6 in profit and each goat $20.

How many of each animal should she raise in order to

maximize profits?


