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The method of Lagrange multipliers is one of the most

commonly used optimization techniques. For example,

most equilibria in basic (graduate-level) economics are

found using this method.

In the last lecture, we saw the theoretical idea behind the

method of Lagrange multipliers, namely that an optima

for a function constrained to some curve will happen at a

points where the level set for the function is tangent to
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x2 + xy + y2 subject to the constraint
√

x2 + y = 5.

The first step can sometimes be the most difficult in

applied problems.

Example 2. A production team has been budgeted $60

million for the development and promotion of a new

product line. Market experience predicts that of x

million dollars is spent on development and y million

on promotion, then 40x3/2y units will be sold in the first

year. How much money should be alloted to development
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In economics, Lagrange multipliers are often used to

maximize utility functions. In the idealized world of

theoretical economics, a utility function gives a numerical

measure of “satisfaction” one experiences when one has

given amounts of various goods. Intuitively, there is some

utility function for beer and nachos whose maximum

involves a combination of both - if you have nachos and

no beer you feel kind of thirsty; beer and no nachos and

you’re inebriated and hungry.
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spend and they derive utility from x pints and y platters

according to a Cobb-Douglas utility function 10x0.6y0.4.

How much beer and nachos should this group of customers

order to maximize their utility?

Example 4. Find the optimal dimensions for a fish

tank if it is to hold fifty thousand cubic centimeters

of water, is supposed to have a total surface area of five

thousand square centimeters, and costs one dollar per

square centimeter for the base and fifty cents per square
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centimeter for the sides.


