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Application to geometry

If we remember the interpretation of the optimum point

as the place where the level curves of f and g are

tangent, we can adapt this technique for certain

geometry problems.

Example 1. Optimize the function f(x, y) = x + y

subject to be constrained on the ellipse x2

9 + y2

4 = 1,

in order to find a tangent line to this ellipse of the form

x + y = c.
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Optimization over entire regions

As a bonus topic, we end our lectures by placing all of

the topics over the past three weeks - plus topics from

linear programming - into one important context, namely

that of optimizing a (non-linear) function over some

region in the plane. Instead of stating a theorem, we

state a method which will work for reasonable functions.

To find the maximum and minimum of a function

f(x, y), go through the following steps:

• Find all critical points inside the region, and evaluate
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An example utilizing this technique is a fitting

culmination of our efforts in learning new techniques in

calculus in Math 241 and 242.

Example 2. Find the maximum and minimum of the

function f(x, y) = 13x2 +5y2−16xy−10x+6y+2, over

the triangle whose vertices are (0, 0), (4, 0) and (0, 3).

In fact, this is such a good example, that for six bonus

points on your last exam, you can turn in a similar

problem as posted on main class page. Note that you

have to get it completely right and show your work,
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