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Finally, we will develop optimization techniques, as were

the main focus at the end of last term, in the setting of

multiple variables.
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Why are we studying these topics?

The study of mathematics places stringent demands on

one’s ability to reason clearly and completely – this is

why the university has a general requirement in

mathematics.

The integral calculus is the second, crucial, half of one of

the greatest intellectual stories of all time, namely the

calculus. The fundamental theorems, which relate

integral to differential calculus, are two of the most

important, often used theorems in all of mathematics.
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Most often in real-world modeling it is not practical or

useful to isolate one or two variables. Starting to work on

many-variable problems adds a key tool to our

mathematical modeling toolbox.

Multivariable optimization through calculus is ubiquitous

in economics and other social sciences. Graduate

programs in economics often give crash courses in this

material to their incoming students.
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Practicalities

• Course materials, including a complete syllabus, and

announcements are at:

http://noether.uoregon.edu/∼dps/242/

• Lectures will be projected in outline with details worked

out in writing. The outlines will be available online

before class.

• Homework is due on Fridays at the beginning of class.

All assignments are posted on the syllabus.
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• Sections are on Wednesdays or Thursdays. There will

often be quizzes (as posted on syllabus).

• There will be three fifty-minute exams, each covering

one third of the material. They will be non-cumulative,

as a significant fraction of the material is non-

cumulative. Accordingly, there will be no final exam.
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First (half) lecture: Discrete calculus, a
chance to both review and to look
forward

The functions with which we worked in differential

calculus depended on a continuous variable - one which

could take on any value (such as 1
2 or

√
2 or π or e).

This variable was often measuring time. For some

problems it is more natural to have a discrete variable

(for example, when measuring financials every quarter as

opposed to continuously).
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Definition 1. A discrete function is one whose domain

consists of integers (but whose range consists of any kind

of number)

Any of the familiar examples of functions (polynomials,

exponentials) can be restricted to be discrete functions.

We often use n to name the variable instead of x, so

that the squaring function is named f(n) = n2.
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Notice the similarities with the derivative!

One can use the difference function much as we used the

derivative. In particular, a function achieves a relative

maximum or minimum where its difference function

changes sign.

Aggregate functions

Aggregate functions measure total amounts (for

example, total sales when given monthly sales).

Definition 4. Given a discrete function f(n) define the

aggregate function Af(n) to be f(1)+ f(2)+ · · ·+ f(n).
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Example 5. • If f(n) = n, Af(n) = n(n+1)
2 (as Gauss

figured out when he was eight years old!)

• If f(n) = n2, Af(n) = n3

3 + n2

2 + n
6.

• If f(n) = 2n−1, Af(n) = 2n − 1.

Notice that the derivative of Af(n) looks related to f(n)
itself.
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For discrete functions, these theorems are the result of

simple arithmetic. Their continuous analogues are much

more subtle. The difference function is the discrete

analogue of the derivative, and the aggregate function is

the discrete analogue of something we will call the

(definite) integral. Both of the former have to do with

differences and change. Both of the latter have to do

with total and accumulation. Their interrelationship

through fundamental theorems will be of both

conceptual and computational use.


