
MATH 242, LECTURE 20

1. The gradient

Because we have talked about vectors, we can talk about the construction which assembles partial
derivatives into what might be called a “total derivative”, namely the gradient vector. The book does not
cover this topic, and it will not appear on homework, quizzes and the main part of the last exam, but still
might appear somehow (wink wink).

Definition 1. The gradient of a function f(x, y) is the vector
[

∂f
∂x

∂f
∂y

]
.

Example 2. Find the gradient of the function f(x, y) = x2 − y2 and its value at the point (1, 2).

Using the dot product, we can use the gradient to find the rate of change of a function in any direction.

Theorem 3. The rate of change of a two-variable function at a point in a given direction is the dot product
of the gradient vector at that point with a unit vector in that direction.

Example 4. Find the rate of change of the function x2 + y2 at the point (1, 1) in the direction of the unit

vectors

[
1√
2

1√
2

]
and

[
3
5
4
5

]
.

2. Higher-order partial derivatives

As in the case of a single variable, we are free to take a derivative of a derivative. The notation works
as follows:

Definition 5. The partial derivative with respect to x of the partial with respect to x is fxx or ∂2f
∂x2 .

The partial derivative with respect to y of the partial with respect to x is fxy or ∂2f
∂y∂x .

The partial derivative with respect to x of the partial with respect to y is fyx or ∂2f
∂x∂y .

The partial derivative with respect to y of the partial with respect to y is fyy or ∂2f
∂y2 .

Example 6. Find second-order partial derivatives of f(x, y) = x2y3 + exy and f(x, y) = ln(x + y)

3. Finding relative maxima and minima of multivariable functions

In one variable, we found that maxima and minima can occur either at endpoints of a constraint interval
or at critical points, which were mainly where the derivative of the function vanished. In the second third
of the class, we learned about finding maxima and minima of linear functions, which all occur on the
boundary of the constraint region (aka linear programming). Now we will focus on multivariable critical
points.

Definition 7. A critical point of a multivariable function is a point at which all partial derivatives vanish.

We will formalize what can happen at a critical point after looking at some basic examples.

Example 8. Find the critical point(s), and look at the graphs of the functions near those points, of the
following:
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• f(x, y) = x2 + y2

• f(x, y) = −(x− 2)2 − (y + 1)2

• f(x, y) = x2 − y2

So at a critical point, in every direction we go from increasing to decreasing, or decreasing to increasing.
At (what looks like) a local maximum, a function goes from increasing to decreasing in every direction.
At a local minimum, the change is from decreasing to increasing in every direction. But in some cases,
called saddle points, the function goes from decreasing to increasing in some directions and increasing to
decreasing in others.

One way to test what kind of behavior is occurring is to take values of many points near the critical
point. If, for example, they are all less than the value at the critical point, then the critical point is
probably a local maximum. But one cannot be absolutely sure with this method. There is an intricate
series of computations which gives certainty in this determination.

Theorem 9. Let f(x, y) be a function in two variables and let (a, b) be a critical point, so that fx(a, b) = 0
and fy(a, b) = 0. Let D be the quantity fxx(a, b)fyy(a, b) − [fxy(a, b)]2. If D < 0 then (a, b) is a saddle
point. If D > 0 and fxx(a, b) < 0 then (a, b) is a relative maximum. If D > 0 and fxx(a, b) > 0 then (a, b)
is a relative minimum.

We will summarize this theorem as a technique in the next lecture. For now, we give one illustration.

Example 10. Find and classify all critical points of the function f(x, y) = x3 − y3 + 6xy.


