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Last time we started to talk about probability as ratio of

areas. For example, the probability that you would hit a

section of a dartboard at random is the ratio of the area

of that section to to the total area of the dartboard. But

areas can “abstractly” represent probabilities as well. We

start with a fun example before moving on to a more

standard ones.
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Example 1. You and your housemates have a two-

bathroom house, but only one hot shower can be taken

at a time. You have one housemate whose first class is

at the same time as yours, and unfortunately you both

like to take ten-minutes showers and start your day in the

same half-hour window. What are the chances that you

get to have an uninterrupted hot shower?
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Continuous random variables
Let’s first step back and review and expand our language

as developed for probability within the context of there

being a finite number of outcomes; we will see that this

language applies when the outcomes can vary

continuously.

Definition 2. • A random phenomenon is one which is

unpredictable but follows a regular distribution after

large numbers of repetitions.

• A random variable X represents the outcome of a
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So, for example, a “7” is six times as likely as a “2” or a

“12”.

Definition 4. A random variable is discrete if the sample

space is a finite number of values. It is continuous if the

sample space is a range of values.

The example above is a discrete random variable - why?
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Example 5. Let X be a randomly chosen number

between 0 and 3.

• What is our random event? our random variable?

• What is P (0 ≤ X ≤ 3)? P (1.5 ≤ X ≤ 2)?

• What is P (1 ≤ X ≤ 1.4 or 2 ≤ X ≤ 2.5)?

In this example X is called uniformly distributed between

0 and 3.
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Example 8. Suppose that X is distributed according to

D =


1
12 1 ≤ x ≤ 3
1
2 3 ≤ x ≤ 4
1
9 4 ≤ x ≤ 7

0 otherwise

• What is the state space?

• What is P (2 ≤ X ≤ 3)?

• Which is more likely, that X is between 3 and 4 or that
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you would get if X were uniformly distributed.

Normal distributions

Example 9. [Main Example] Z is a number chosen with

normal distribution N(µ, σ). We’ll use N(0, 1) as our first

example.

• Our random event is the choice of a number.

• Our random variable Z is the value of the number.
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