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Probability formalities

While we have yet to completely define probability, we

can still list properties which it must obey. (These are

topics from Chapter 11 which we cover briefly.)

• For any event A, 0 ≤ P (A) ≤ 1. Probability 1 means

A is certain to happen, probability 0 means A is certain

not to happen.

• If there are D outcomes in the sample space which are

a priori equally likely, then the chance of achieving one
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of N of these outcomes is N
D.

• P (A doesn’t happen) = 1− P (A).

• If event A and event B have no outcomes in common,

P (A or B) = P (A) + P (B).

• If the outcome of event X is unrelated to the outcome

of event Y (they are independent) then

P (X = A and Y = B) = P (X = A)× P (Y = B)
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equal probability (1/6) of showing any number out of
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Example 3. You roll two dice; each die has an

equal probability (1/6) of showing any number out of

{1, 2, 3, 4, 5, 6}. What is the probability of getting a 12?

An 11? A 7?

Example 4. Toss two coins (a nickel and a penny). If

we are told that at least one came up heads, what is the

probability of the other coming up heads?
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Example 5. Monty Hall easy version. There are 3 doors;

you don’t know what is behind any of them. You are told

that there is a car behind one door, and a goat behind

the other two. You get whatever is behind the door you

choose as a prize. So you pick a door at random. What

is your chance of getting a car?
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Example 6. [Monty Hall problem] Monty Hall wants

to confuse you a little bit. You get to pick a door. Then

(whichever door you pick, whether there is a goat behind

it or a car) Monty opens a different door that has a goat

behind it. (He can always do this, even if you chose a

goat door, because there are 2 goats).

Now Monty gives you the opportunity to switch doors to

the other unopened door. Should you switch?
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• Let Y be the random variable giving the number of

heads.

• What is the sample space?

• How many outcomes in the original sample space give

each Y ?

• What are the probabilities of each Y in this sample

space?

Summary of answers to last part above:
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Y 0 1 2 3 4

# Outcomes 1 4 6 4 1

Probability .0625 .25 .375 .25 .0625
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coefficient, denoted
(
N
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do you notice:

• What do the rows add up to?

• Are they symmetric?

• How can you find the values in a row from the previous

row?

• What are other immediate patterns? (Odds and evens)

Now for the fun part: plot the values of the rows as a

histogram, where the blocks each have area 1
2N , so that
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the total area is one. What do we see? - The Bell Curve

is approximating the rows of Pascal’s triangle!!! (and

thus modeling coin flips!). Or conversely, the numbers in

Pascal’s triangle are telling us about the Bell Curve

(normal distribution)!
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of that is .089

• But P (35 ≤ Y ≤ 45) = .781 and

• P (30 ≤ Y ≤ 50) = .982.

Note that as the number of trials gets very large, the

probability of any one outcome gets very small. It starts

being less relevant to ask for example what is the

probability that you would get exactly 31 heads out of

80. The answer is just too small to matter. What works
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The probabilities end up corresponding to (ratios of)

lengths within these state spaces. Probabilities can also

correspond to (ratios of) areas.

Example 12. If a dartboard is 8 inches in radius and the

center circle is 1
2 inch in radius, what is the probability

that a dart thrown at random will hit the center square?

What is the probability that a dart thrown at random will

hit in the 20-point wedge?

Example 13. [Fun example] You and your housemates

have a two-bathroom house, but only one hot shower
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• Example: uniform.

• Example: sum of two numbers chosen randomly.

• Example: normal.

We will expand on and use this idea more down the road.


