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0.1. Relating hypothesis testing to confidence intervals. The basic calculations for hypothesis test-
ing and confidence intervals are the same: take a simple random sample, compute its mean, and then
calculate its z-statistics using the Central Limit Theorem.

In fact, these two procedures are logically related (seeing how helps us better understand both concepts).

Fact 1. If some guess for a mean µ0 is not within a 1− α confidence interval about an observed mean x̄
then we may reject the null hypothesis µ = µ0 at significance level α.

It helps to sketch a picture of what this is saying and to choose some concrete numbers.

Example 2. Suppose a variable has a standard deviation of 5 and a measured mean of 172.1 from a sample
size of 80.

• Find a confidence interval with C = 95% for this variable.
• Show that the null-hypothesis of a mean equal to 175 can be rejected at level 5%.

1. Caution: garbage in, garbage out

The most common mistakes one sees in applications of statistics are not in the mathematics of means and
deviations – with practice one can master these methods, and there are sophisticated computer packages
to help out – but in starting with biased data, whose error is comparable to the confidence intervals in
question.

Example 3. What if in our UO height example, two of the sample taken were members of the basketball
team over 80 inches tall? If these outliers are thrown out, what is our new confidence level for the hypothesis
that UO men are above average height? Recall heights obey N(69.3, 2.8). We took a SRS of 32 undergrad
men from the UO and found x = 70.4.

One of the topics of Chapter 15 is to elaborate on problems which can plague samples and surveys, in
light of their effects on confidence intervals and hypothesis tests. This material mostly applies common
sense, not mathematics, as we did when we looked at designing surveys and experiemens.

We will not at all cover the material from Chapter 15 on type I and II errors and power of tests.
This development of language is straightforward enough so that you could learn it on your own if you
encountered these terms outside of class.

2. Estimating the mean without knowing σ

In §13 the method we learned for estimating our population mean µ had the serious drawback that we
had to know the standard deviation for our population. We now wish to approximate µ without knowing
the standard deviation.
Basic Idea: Take a SRS. Calculate the standard deviation of our sample, s. This is called the standard
error to distinguish it from the unknown standard deviation of our population.

Calculate the mean of our sample x. Use s to estimate σ and then techniques we’ve already learned to
estimate µ from x.

TERMINOLOGY: We use

µ = for our (unknown) population mean,
1



2 MATH 243, LECTURE 18

and
x = for our sample mean.

We now also need to distinguish between two standard deviations.

σ = for our (unknown) populations standard deviation

and
s = for our sample standard deviation.

Recall that if our population has distribution N(µ, σ) and we look at samples of size n, our standardized
sample mean

z =
x− µ

σ/
√

n

has distribution N(0, 1).
If we look instead at the random variable

t =
x− µ

s/
√

n

this is called the t-statistic.
The t-statistic looks much like the z-statistic we used when we assumed knowledge of the true deviation.

We give the t-statistic a distinct name because unlike the z-statistic it is not normally distributed. If we
applied the 68-95-99.7 rule, we would get incorrect answers!

Instead, we must understand where the t-statistic fits on what is called the t-distribution with n − 1
degrees of freedom. This distribution is abbreviated t(n−1), and looks like a normal distribution with “fat
tails”, which arise because of the uncertainty of not knowing the true standard deviation. If k is large,
t(k) ∼ N(0, 1).

The critical values for t-distributions are in Table C. We can check by comparing with the last row that
with a t-statistic you need to be more deviations away from the mean to have the same level of confidence
as a z-statistic.

Example 4. Use t-statistics to estimate population mean with confidence 95% if we have an SRS of size
n = 11 with x = 27 and s = 2.

Example 5. With data as above, say whether or not the null-hypothesis of µ = 30 can be rejected.

Example 6. If you sample 200 bacterial lifespans and find an average of 10.41 days and a deviation of 2.1,
does this finding support the hypothesis that these bacterial lifespans are on average more than 10 days?


