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Summary

Many problems in physical science involve the estimation of a number of
unknown parameters which bear a linear or quasi-linear relationship to
a set of experimental data. The data may be contaminated by random
errors, insufficient to determine the unknowns, redundant, or all of the
above. This paper presents a method of optimizing the conclusions from
such a data set. The problem is formulated as an ill-posed matrix
equation, and general criteria are established for constructing an ¢ inverse ’
matrix. The °solution’ to the problem is defined in terms of a set of
generalized eigenvectors of the matrix, and may be chosen to optimize the
resolution provided by the data, the expected error in the solution, the fit
to the data, the proximity of the solution to an arbitrary function, or any
combination of the above. The classical least-squares”’ solution is
discussed as a special case. '

1. Formulation of the problem

Suppose that we wish to determine a set of unknown parameters Xpj=1,..,m
from a set of data'y;, i = 1, ..., n where y; are each functionally related to the Xjina
known way. That is

.Yl = Al (xl, --"xm)
Vo= An (xls “-,xm)‘

Such a set of equations may arise by approximation of a continuous relationship
y(m) = Ay, x(©)] by a discrete representation, letting y; = y(n), x; = x(&); or by
expansion of the continuous functions y(y) and x(£) in terms of appropriate sets
of orthogonal functjons, in which case ¥; and x; represent expansion coefficients
(See Table 1 for notation conventions.)

If the functions A; (x;) are linear in x;, we may write the problem in matrix form

or

y = Ax. (1b)
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Table 1

Notation Conventions

1. Repeated indices imply summation unless otherwise noted. »

2. A bold-face block capital letter represents matrix of coefficients (e.g. A = (4;))).
3. A bold-face lower case letter represents a column vector (e.g. x = (x;)).

4. var (x;) represents the variance of x;.

If the functions A4;(x;) are not strictly linear, but vary smoothly enough, they may
be expanded in a Taylor series about some set of initial values of the x;, say x;°
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Defining y; = 4;(x;°)+ Ay; and ignoring second and higher order terms in (2), we f
have '_
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This is the same form as equation (1a), with the substitution of Ay; for y;; Ax; for x;, !
and ‘

o4,
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For simplicity, we shall proceed using the notation of equation (1), with the under-
standing that the above substitution can be made at any stage of the calculations for
a system which results from the perturbation of a quasi-linear problem.

Problem (1) may be approached by operating on both sides with an (mxn)
¢inverse > matrix H and letting the  solution’, or model, be

% = HAx = Hy. (3)
The operator H will be a good inverse if it satisfies the following criteria.

(a) AH ~ 1,,, the nx n identity matrix. This is a measure of how well the model
fits the data, since Ax =y if AH =1,

(b) HA ~ I,. This is a measure of the uniqueness of the solution, since there may ]
exist only one solution if HA =1,,.

(c) the uncertainties in & are not too large, i.e. var (%) is small. For statistically
independent data,

var (&) = 3 Hy? var (3. @ |

Backus & Gilbert (1968) pointed out that, for under-determined systems, the i
product matrix HA has a physical meaning related to the establishment of ¢ unique’ ‘
properties of the solutions to equation (1). That is,

% =Rx, ® |

where R = HA. : \
The matrix R maps the entire set of solutions x into a single vector . Any element 5

of &, say £,, may be interpreted as the result of convolving the k™ row of R with any
vector which satisfies (1). Thus, R is a matrix whose rows are ¢ windows’ through
which we may view the general solution x and obtain a unique result. If R is an
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identity matrix, the solution % is unique, and each element is perfectly resolved. If
R is a near diagonal matrix, each element £, is in fact a weighted sum of nearby values
x;, j near k, for any solution to (1). Thus, the degree to which R approximates the
identity matrix is a measure of the resolution obtainable from the data. The rows of
R are thus called ‘ resolving kernels’.

In a similar way, Wiggins (1972) showed that, for over-constrained systems, the
product S = AH is a measure of the independence of the data. The ° theoretical ’
data § = AR = AHy are a convolution of the matrix S with the actual data y. The
matrix S is referred to as the information density matrix.

The criteria (a), (b) and (c) are not equally important in all cases, and may be
weighted for specific problems. Additional physical constraints may apply in some
cases. The procedure below allows these to be incorporated easily.

2. The well-posed case

Consider as an example the case where A is a square, symmetric, non-singular
matrix. Elementary matrix theory (e.g. Hildebrand 1965) tells us that there exists a
unique inverse A~* such that AA™! = A™' A =1, the nxn identity matrix. Thus,
criteria (a) and (b) are satisfied exactly and there is a unique solution, = A~ !y,
which satisfies the data exactly. The variance of the model will depend upon how
non-singular the matrix A really is.

The nature of the singularity is best understood in terms of the eigenvalues of the
matrix A. The eigenvectors v; and eigenvalues A, are defined by the equations

Av; = A;v; (no summation)

where the v; are orthonormal, i.e.

V,- V., = 5ij‘

The matrix A may be factored into the product

A =VAVT

where V is an #x n matrix called an € orthonormal modal matrix ’, whose columns
are the eigenvectors v;, and A is an nxn diagonal matrix whose elements are the
eigenvalues ;. It may be assumed without loss of generality that the eigenvalues are

written in decreasing order of their absolute value, and that the eigenvectors are
ordered correspondingly in the matrix V. The matrix V has the convenient properties

VIV=VVl =1,
The inverse matrix A~! may then be written
A"l = VA-IVT )

where A™* is a diagonal matrix whose elements are 4, !, Thus, the inverse matrix
will cease to exist if any of the eigenvalues Ay Is zero. If A; is non-zero but very small,
the operator 471 exists but does not satisfy criterion (c); that is, for statistically
independent data,

n

n . 2
vars = 33 s w ) var o))
J=

i=1

will be very large because of the reciprocal eigenvalue in the bracket.
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3. Generalized eigenvector analysis

Eigenvector analysis can be extended to the general real n X m case as discussed
by Lanczos (1961). Two sets of eigenvectors u; and v; may be found such that

Av; = A;u; (no summation)  (Ta)
ATu; = A;v;  (no summation) x (7b)
or
ATAv;=27%v; j=1,..,m  (nosummation) (82)
AATw; = A%u;, i=1,..,n (nosummation) (8b)

We shall again assume that the eigenvalues are ranked in decreasing order of magnitude
It can then be shown that

Ai=4; if i=], isp

for some integer p less than or equal to the minimum of m and n. That is, there are
p non-zero eigenvalues common to (8a) and (8b), and all other eigenvalues are zero.
The integer p may be interpreted as the potential number of degrees of freedom in
the data.

The matrix A can be factored into the product

A=UAVT | ©)

where U is an n X p matrix whose columns are the eigenvectors w;,i=1,...,p;V is
the m x p matrix whose columns are the eigenvectors v;, i =1,...,p and A is the
diagonal matrix of eigenvalues. After U and V are formed from the eigenvectors
corresponding to the p non-zero eigenvalues, there remain (n—p) eigenvectors u
and (m—p) eigenvectors v,, corresponding to zero eigenvalues. It is convenient to
assemble these into the columns of matrices also, and to denote these matrices as Uy
[an 7 by (n—p) matrix] and V, [an m by (m—p) matrix]. By the orthonormality of
the eigenvectors u;, we may obtain the following relationships

UTu =1, ‘ (10a)
Uy, "0y =1,, | - (10b)
UTu, =0 p*x(n—p) (10¢)
U, Tu=0 (n—p)xp. (10d)

If p = n, then U contains the complete set of eigenvectors of the symmetric matrix
[A AT], and is therefore an orthonormal modal matrix. It then satisfies

uu’ =1, - (10)

I shall demonstrate below that the condition p = n guarantees the existence of 2
solution. . .

The eigenvectors v, i = 1,...,m are similarly a complete set of orthonormal
vectors in the ¢model’ space. We have separated them into two groups: those t0
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which the model is sensitive (i.e. those in V), and those which are annihilated by A
(i.e. those in V,). The matrices V and V, obey the same type of relationship as
U and UO

VIiv=l, (11a)
VoTVo=1,_, (11b)
ViV, =0 px(m—p) (11c)
Volv=0 (m—p)xp. (11dy

If p = m, then V contains the complete set of eigenvectors of the symmetric matrix
[AT A], and is therefore an orthonormal modal matrix. It then satisfies

VVT =1, (11)

The condition p = m guarantees that, if a solution to equation (1) exists, it will be
unique.

Before proceeding, it may be worthwhile to give a simple interpretation to
equation (9). In an equation such as B f = g the column vector g may be looked upon
as a weighted sum of the columns of B with the weighting factors given by the elements
of the column vector f. The matrix product BF = G may be considered column by
column: the first column of the matrix G is a weighted sum of the columns of B, with
weighting factors Fy,, F,,, etc., and similarly for the rest of the columns. A similar
argument holds for row vectors: in the equation f"BT = g7, the row vector g7 is a
sum of the rows of BT with the same weighting factors as above. In the product
F'B” = G, each row of G T is a weighted sum of the rows of B 7, with the weighting
factors given in the appropriate rows of FT. Thus, in a long string of matrix multi-
plications, each column of the product matrix is a weighted sum of the columns of
the first matrix in the string, and each row of the product is a sum of the rows of the
last column in the string. Thus, from equation (9), each column of the matrix A is a
weighted sum of the columns of U ; that is, the eigenvectors w,i=1,..,p. Bach
row of A is a sum of the eigenvectors v;,i = 1,...,p

Because the n eigenvectors u;, i = 1, ...,n form a complete set, we may express
the data vector y as a sum of the u;, ; that is, '

y= 3 hw=3 fut ¥ fu=UptUh, (1)

where the vector p has the )4 cofnponents By, ..., By and By has the (n—p) components
Bp+1s - By By (10a) and (10b), p = U”y, and $,=U,T y. In a similar way, we
may express the ¢ unknown’ vector & in terms of the v;, i = 1, ..., m.

x = Va+ Voo, (13)

wherea = V7 x is a vector with p components and &, = V, 7 x is a vector with 71— P
components. ' ‘

If we then replace all the quantities in equation ( 1) with the equivalent expressions
in (9), (12) and (13), the ¢ transformed ’ equation becomes

UAVT [Va+V,a,] = U+ U, B, (14)

and the prbblem is now to find the unknown vectors & and &,. The existence of a
solution is equivalent to the vanishing of the  residual ’ vector, ¢ = Ax—y. In the
transformed notation

&2 = e ] = |Aa— B2+[Bol . (15)
The * least squares’ solution is that which minimizes |2, and requires that
a=A"'B (16)
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leaving the least square error’ |Bo|> = |U,T y|*. There will exist an exact solution
only if UyTy = 0. For p = n, this condition must hold, since U, = 0. For p <n,
there may be an exact solution only if the data contain no contribution from the
eigenvectors in U,; this leads to the n—p constraints, up.y =0, i =p+1, ..., n
When p < n, the system is said to be overconstrained.

The vector o, does not appear in (15), and thus the a; may be chosen arbitrarily
fori = p+1, ..., m. The least squares solution will be unique only if p = m. When
p < m, the system (1) is said to be underdetermined.

Notice that, if p <m and p < n, the system (1) is. both overconstrained and
underdetermined. In this case, an exact solution may not exist. However, there will
exist an infinite number of solutions satisfying the least-squares criterion.

4, The Lanczos inverse

To handle linear systems with the problems discussed above, Lanczos (1961)
introduced the ¢natural’ inverse, which is equivalent to the ¢ generalized inverse’
of Penrose (1955),

| H, = VAU . 17
This has a form reminiscent of equation (6). The corresponding model will be
%, =H,y=VA~1UTy. ' (18)
Expressing x; and y in terms of théir ‘ transform ’* variables as above,
a=VTg, =A"'g (19a)
and o, = Vol &, = 0. ' (19b)

The Lanczos inverse has the following desirable properties. (a) It always exists!
(b) Companng (192) with (16), it is evident that the Lanczos inverse is a ‘least
squares’ inverse, and is thus an exact solution, if any exists. (c) Further, &; is that
least squares solution which minimizes |x|> since, for a least squares solution,

[x|? = A7" B>+l

The first term is fixed, and the second term is minimized by &, = 0. The property
[x|? = min is a useful one if x represents a perturbation to some starting model in a
quasi-linear problem. (d) The resolution matrix for the Lanczos inverse is given by

R =HA = VA™' UT.UAV" = VV". (20)
This is the optimum resolving matrix in the sense that it minimizes
Iy = '21 (HkiAij—ékj)z @2n
J=

for each value of k. Equation (21) may be interpreted thus: each row of R is the best
fit to the corresponding row of the identity matrix, in the least squares sense, which
may be formed from the rows of A4, and (e) The Lanczos inverse similarity prov1des
the best information density matrix

S = AH = UU? (22)
" in the sense that it minimizes

S = .21 (4uH ij—akj)z (23)
j=

I have claimed above that the Lanczos inverse is a least squares inverse, and
thus for a purely overconstrained system, it must be identical to the inverse provided

R
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by the standard least squares procedure. This procedure may be stated as follows:
find the vector x which minimizes [¢|> = |[Ax—y|2. We have

le)? = (Ax—y)T(Ax—y) = xT AT Ax—x7 ATy—yT Ax+yTy.
Differentiating with respect to x”, and, setting the result equal to 0, we get

[ATA]x = ATy. (24)
If the matrix product in brackets is non-singular, ’
% =[ATA] 1 ATy. (25)
Expressing A in terms of equation (9),
%= [VA2VT]" VAU y. (26)

As long as p = m, (that is, the system is not underdetermined) the inverse of the
bracketed quantity is :
VA~2VT,
and we have
£=VA'U'y=H,y
as advertized.

It is interesting to observe what happens when p < m, that is the system is under-
determined as well as overconstrained. Then AT A will be singular, and the standard
least squares procedure will fail. However, direct substitution will demonstrate that
% =H,y satisfies equation (24) regardless of the singularity of AT A. Thus, the
standard least squares procedure is a short-cut to the Lanczos inverse for the strictly
overconstrained case, but will not guarantee stability for the underdetermined case.

An analogous procedure to ¢ least squares ’ applies to the strictly underdetermined
case (Smith & Franklin 1969). Here

% = AT[AAT] 1y X))

which again is identical to the Lanczos inverse, provided that AAT is non-singular.
This requires that p = #, that is, that the system not be overconstrained.

5. Modifications of the Lanczos inverse

_Until this point, we have assumed that the data were dimensionless and statistically
independent, and we have ignored criterion (c), the variance of the model. In this
Section, I shall discuss modifications of the Lanczos inversion procedure which
address these considerations. :

First consider an overconstrained system for which the data are statistically
independent, but have different units. One might then wish to generalize the least
squares error criterion to minimize

&' De
where D is a diagonal matrix whose elements are
D; = 1/var ().

In this way, the residual for each data point is compared with its expected error.
When the data are not statistically independent, it is logical to choose for D the
inverse of the covariance matrix for the data (Kaula 1966). The problem may be
handled with the same formulation used in the last section, provided that D is a
symmetric, positive definite matrix (a reasonable assumption for an inverse covariance
matrix). I shall show below that there will exist a matrix E such that ET E = D.
We have already solved the problem &7 & = min, where g = Ag—y. Now consider
the equation : :

Ee = EAX—Ey 28)
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and let Ee =¢', EA = A’, and Ey =y. We now have a problem of the form of
equation (1), and we may use the standard least squares procedure or the Lanczos
procedure to find & which minimizes

g Tg =¢7De.

Thus, the problem is solved once E is found. This may always be accomplished,
because the symmetric, positive definite matrix D may be decomposed into its eigen-
vectors and eigenvalues (which will be positive)

D = VDAD VDT (29)
and we may set E=A2V,T . ’ (30)

This weighting matrix E puts the data in a dimensionless, statistically mdependent
form. Where the data were already stat1st1cally independent, the weighting by E is
equivalent to dividing each equation in the system (1) by the standard deviation of
the corresponding data point.

A similar transformation allows the use of the Lancsoz procedure to find that
solution of an underdetermined problem which minimizes

xTFx

where again F is assumed to be a symmetric positive definite matrix. Where we are
able to guess something about the statistics of the unknown parameters (cf. Jordan &
Franklin 1971), the matrix F may be chosen to be the inverse covariance matrix of
the model parameters. We then let x’ = Gx and A’ = AG™!, where G is selected
such that GT G = F. We may then use the Lanczos procedure to find that & which
minimizes |[X'|2, and our desired solution is & = G™1%’.

The above transformations may be combined for the general solution, to find that
¢ Wh1ch simultaneously minimizes ¢ T De and x T Fx. This is accomphshed by lettmg
% = G™'H,'y where H;  is the Lanczos inverse for the matrix A’ = EAG™1, and
y = Ey The effect of these transformations on the resolution and information

density matrices is expressed by
R=G 'RG (31)

S=E"'S'F. ' (32)

Let us now address the problem of the variance of the model parameters. I have
shown that we may assume the data to be statistically independent and to have unit
variance, if the appropriate transformatlons are made in advance. By equation (4),

we shall then have v
varg, = 3 (—’i) : (33)
Jj=1 A;

J

‘This will be finite, but because the smallest non-zero eigenvalue may be pretty small,
the variance could be unacceptably large. A sensible way to control the variance
(Wiggins 1971) is to construct the inverse H out of only those eigenvectors correspond-
ing to the g largest eigenvalues where g < p. This is equivalent to considering an
eigenvalue to be zero if it is less than some modest threshold (i.e. assuming p less than
it really is). The threshold may be set such that

E () < o9

J

for all k, where t, is the maximum allowable variance of £,. The effect of reducing 4
is to reduce the number of eigenvectors belonging to U and V, while increasing by
the same amount those belonging to U, and V,. This degrades the resolution and
information density, so that we have a tradeoff as indicated symbolically in Fig. 1.

B L

B
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Fi16. 1 Schematic diagram showing tradeoff between resolution and variance in

the estimation of the k™ unknown parameter for a simultaneously underdetermined

and overconstrained problem. The effective number of degrees of freedom, g, may

be taken to be any integer less than or equal to p. Use of the © generalized inverse’

procedure, which requires that p = n, would lead to numerical instabilities for
this case.

The integer q is the effective number of degrees of freedom in the data, and depends
on the uncertainties in the data as well as on our need for certainty in the model.
A great deal of care should be exercised in choosing the appropriate value of g. For
systems which are fundamentally underdetermined, the ability to make any reliable
interpretation from the model & may %slimited either by lack of resolution, or by
large variance in . Surprisingly, the m st important conclusions may often be made
on the basis of a model which fits the data very poorly, even though exact solutions
exist. This is because the exact solution are not unique, and because the inverse
operators which generate them may rely heavily upon poorly determined features of
the data. ‘

Similar arguments hold for systems which are basically overconstrained. If care
is not exercised in choosing g, the model may be subject to unnecessarily large variance
in an effort to satisfy poorly determined features of the data,

6. Special inverses for underdetermined systems

Let us examine in more detail the case of the strongly underdetermined system.
This case will include those problems in which equation (1) is the result of discretizing
& continuous relationship between a known function’ and an unknown function,
because we may only handle finite amounts of data, yet we:would in principle like to
know an infinitude of details about the unknown function. ‘A wise procedure is to use
more parameters to describe the unknowns than are likely to be uniquely détermined
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by the data. One may then form a family of inverses, compare the tradeoff between
resolution and variance for this family, and select that inverse which is most appro-
priate for interpreting the solution. This procedure simultaneously formulates
intelligent questions (what is the effective number of degrees of freedom in the data,
and which unknowns may be independently determined), while providing an answer
with an acceptable variance. In this section, I shall describe some alternate techniques
for optimizing the resolving kernels; describe a technqiue for finding the closest
solution to some preassigned function, and discuss the wisdom of taking more data
to obtain better resolution.

I have stated above that the Lanczos inverse provides the closest resolution matrix
available, in a least squares sense, to the identity matrix. It is instructive to show that,
in addition, it provides the most deltalike matrix which may be constructed from the
incomplete set of p eigenvectors vy, v, ..., v,. That is, assume the resolution matrix
to be of the form

R = BV, . (35)

Each row of R will be some linear combination of the eigenvectors of V. Let us
denote by b,” the k™ row of B, and by §,” the k" row of the identity matrix (i.e. the
J* element of this vector is zero for j # k, 1 for j = k). We now determine b,7 as
the least squares solution to
bI VT =b," (36)
or, transposing,
Vb, = §,. (37

By (29), the least squares solution is
.Bk= [VTV]—1VT8k=VT6k (38)

and, transposing back, we have

b7 =3§,7V. (39)
Performing this operation for every row, we have |
., B=YV (40)
and the most deltalike resolution 'ﬁatriié is
| . R=WVT . @)

identical to the Lanczos inverse.

The modified Lanczos inverse discussed in the last section_controls the variance
of the model by using only g of the possible p eigenvectors in the inverse. As phrased
above, the same g eigenvectors are used in constructing each row of H. However, it
is useful to note in equation (4) that the variance of the k™ model parameter depends
only on the parameters of the k™ row of H. We may construct an inverse row by row,
getting a different tradeoff curve of resolution vs variance for each row. That is

=% (,:1 Ve I/ij~5ki)2 @
var () = ,—‘:‘%( Iz‘f )2 @)

where the integer ¢ may now be a function of k. This allows us to examine each model
parameter £, individually. In so doing, we implicitly ignore criterion (a), and the
fit of the model & to the data. If we form a model by independently estimating each
value £, by this scheme, it is very likely that the model will not fit the data. This is
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not a serious concern, if indeed the separate values £, have an intrinsic meaning which
is useful in the eventual interpretation of this problem. On the other hand, if a true -
solution (1) is desired, one may increase the values of g(k) at the expense of increased
variance for the values £,. _

There are some cases where it may be desirable to have a particular resolution
kernel resemble some function other than the delta-function. For example, attempting
to create a delta-like kernel may result in having a sharply peaked kernel with positive
and negative ¢ side lobes’, which could be avoided by letting the kernel have a some-
what broader peak. Or, it may be desirable to form an averaging kernel with a
< dipole * behaviour, that is, a sharp negative peak adjacent to a sharp positive peak,
to obtain an estimate of the derivatives of the general solution x. Such a problem may
be very easily handled by substituting the desired optimum kernel function for §, in
equation (39). The corresponding inverse matrix may be constructed by setting

H=BA-1U". 44)

In other cases, it may be desirable to have the resolution kernel resemble a delta
function, but proximity to a delta function may be more important for some elements
than for others. For example, suppose one wants to estimate X, and has evidence
that x; is very large for some particular value j # k. Then one would want to assure
that the element Ry; is very small, at the expense of allowing other off-diagonal
elements of R to be somewhat larger. This may be accomplished by applying a
weighting factor matrix to both sides of (25). If the weighting matrix is W, and we
let WT'W = W2, then

: ' B=[VIW2V]lviw2 45)

Thus, the weighted resolution kernel, and its corresponding inverse H, may be easily
computed from the eigenvectors of the original matrix A, avoiding the need to compute
eigenvectors of a new, weighted matrix. .

To summarize the above discussion, we may use the fact that each row of the
resolution matrix must be composed of the eigenvectors v;, i =1, ..., p, and the
standard least squares procedure (equation 25)) to find that resolution kernel nearest
to some desired function. The same trick may be used to find that solution of equation
(1) which is nearest to some favourite function. The favourite function might be a
hypothetical solution to (1), which would have special importance for interpretation.
We know that the form of the general solution is

x = Va+Vya, ' (46)

where o is determined by equation (1), while o, is arbitrary. We then seek the least
squares solution to

Vo+ Voo = f 47
where f is the favourite function. By equation (25), we have
oo = Vo [f—Va] = V,Tf (48)

so that the solution which best approximates f is
Xf = Vd-{-VoVon: 2L+V0 VOTf. (49)

Let us now consider the problem of , marginal utility of data’. Suppose we have
analysed a large linear system according to the above procedures, and have found
that the resolution provided by the data is insufficient. We wish to consider the
improvement which would result from adding an (n+ 1) st measurement. Generally,
the values of Aytq, 15 +oos Ays 1, m may be calculated in advance, and the variance of
the (n+ 1) st measurement may be at least estimated in advance. We could, of course,
add a new row to the matrix A and start from scratch, finding a new set of eigenvalues
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and eigenvectors, etc. However, a first order perturbation to the existing eigenvalues
will probably be sufficient to answer the question at hand. Let us denote by a the
mx1 column vector whose values are A, 1, ...s Ay+1,mt then the new (n+1) st
row of A isa”. Before adding the (n+1); row, we had from equation (8a) that

| ATAV =VAZ (50)
If we denote by A’ the new matrix with the-(n+ 1)st row added.

A
A= (—ﬁ) (n+D)x m (51)
the problem becomes that of finding V' and A’ such that
ATAV =V A% (52
First, we note that
ATA =[ATA+aa™] (53)

Then, to first order, we assume that the eigenvectors are unchanged, thatis V' = V.
We then have
[ATA+aaT]V = VA2 - (54)
or L
A?=VT[ATA+2aT]V = A2+3A% (55)

Because the matrix V is only approximately the matrix of eigenvectors for the problem
(52), A’? will not be a truly diagonal matrix, but for large systems the off-diagonal
elements will be small compared with the diagonal elements. (If they are not, first
order perturbation theory is insufficient.) Ignoring off-diagonal elements, we have

547 = (V;Ta).

We may now estimate the possible improvement in resolution and variance by recom-
puting the tradeoff curve, using the same eigenvectors v; but augmented eigenvalues

lljl = \/Ajz +5A‘j2'

The direct effect of augmenting the A; will be to decrease the variance in &, which in
turn may allow more eigenvectors V to be used in the inverse without violating the
preset variance limit. : . : :

7. Special inverses for overconstrained systems \

By now, it should be clear that each feature of the underdetermined system has
its analog in the overconstrained system. For the underdetermined system, we were
primarily interested in the tradeoff between resolution and variance and the complete-
ness of the set of eigenvectors in V. Here, we are most interested in the tradeoff
between information density and variance, and the completeness of U. Using the
essentials of the least squares technique, we may design an inverse H which will
provide an information density S closest in the least squares sense to any desired
matrix of the proper dimensionality. If we design S to approximate the unit matrix,
we find which data act independently and which are seen through a hazy window.
Designing S to approximate a family of somewhat broader peaks may eliminate side
lobes. Where the data represent successive values read from a continuous curve,
designing the S matrix to approximate a series of ¢ dipoles * will help reveal to what
extent the derivative of the data curve represents independent information.

For the underdetermined system, the free eigenvectors in V, could be used t0
search for a solution closest to some hypothetical function with specia.lphysi@11
meaning. For overconstrained systems, the same principle may be used to test the
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residual vector for components with special physical meaning (e.g. predictable errors
with known properties but unknown magnitude). Removal of these components
is equivalent to ¢ filtering ’ the data.

We may also consider the value of creating an additional unknown to help fit the
data. This results in adding a new column to the matrix A. First order perturbation
theory may tell us quite easily the improvement this would allow in the information
density matrix, and thus in the fit to the data.

8. Summary

The matrix equations which occur in real life situations do not need to be well
conditioned. They may be simultaneously overconstrained and underdetermined.
Even when the matrix relating the unknowns to the data appears non-singular,
random errors in the data may reduce the effective number of degrees of freedom in a
linear system. However, even the most ill-conditioned system may contain useful
information. The matrix equation Ax = y may be solved in terms of a linear operator
on the data, & = Hy. Useful criteria for constructing H are (a) R=HA ~1I,;
(b) S = AH ~ I; and (c) var (£,) = 3 H,,2 var () is small.

For underconstrained systems, the matrix R has a physical interpretation: the
rows of R represent windows through which the general solution (and thus, the ¢ real’
solution) may be observed. For overconstrained systems, the model £ will in fact fit
certain combinations of the data, determined by passing the real data through the
windows represented by the rows of S. In general, the performance of the inverse
under (a) and (b) will be inversely related to performance under (c).

Decomposing the matrix A into its eigenvalues and eigenvectors, A = UAVT,
allows the investigator to construct easily inverse operators which optimize any
combination of the three criteria above, if (a) and (b) are taken in the least squares
sense. Furthermore, special inverses may be easily constructed to test hypothetical
features of solutions. Moreover, simple perturbation theory allows one to calculate
easily the improvement in resolution and information density provided by taking
more data or increasing the number of unknown parameters.
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