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21.1 Introduction

When judging the position of a moving object, human observers do not perceive and
memorize the moving object’s correct position. There are two known phenomena in judged
position errors of a moving object, representational momentum (RM) and the flash-lag
effect (FLE), both of which we consider here.

RM was originally reported by Freyd and Finke (1984). Freyd and colleagues displayed
a series of still frames to imply the rotation of a rectangle (e.g., Freyd & Finke 1984, 1985;
Freyd & Johnson 1987). Observers saw three views of a rectangle at different rotations
about its center, with 250 msec display duration with 250 msec interstimulus interval. The
fourth rectangle was presented as a probe 250 msec after the third frame presentation. The
rotation of the probe was selected from possible positions symmetrically distributed around
the actual third position of the rectangle. Observers were asked whether the rectangle in the
third frame (the last frame of the motion sequence) was the same orientation as the probe.
The results showed that their memory for the third orientation tended to be shifted in the
direction of rotation. In other words, the orientation of the probe rectangle had to be rotated
slightly further to be judged as being in the same position as the third rectangle. To account
for the forward shift of the final position of a stimulus undergoing implied motion, some
authors postulate that the dynamics of the representational system follow physical laws,
such as momentum (representational momentum; Finke & Freyd 1985; Finke et al. 1986;
Freyd 1987; Finke & Shyi 1988). RM is a robust effect as observed with smooth object
motion and in pointing at the final position of a moving object (e.g., Hubbard & Bharucha
1988). Several variables influence RM (for review, Hubbard 1995b). RM increases with the
velocity (e.g., Freyd & Finke 1985; Hubbard & Bharucha 1988; Nagai & Saiki 2005) and
acceleration of the moving target (Finke et al. 1986), pointing to the similarity between RM
and physical momentum. Hubbard and others demonstrated that RM may reflect physical
principles. For example, RM increases downward, in the direction of gravity (Hubbard
& Bharucha 1988; 1995a, 1997; Reed & Vinson 1996; Hubbard & Ruppel 1999; Nagai
et al. 2002; Vinson & Reed 2002), whereas implied friction between a moving stimulus
and an adjoining surface reduces RM (Hubbard 1995a; see also Nagai & Yagi 2001).
Moreover, RM is influenced by real-world knowledge of the typical motions of familiar
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objects (Freyd & Miller 1992; Reed & Vinson 1996; Vinson & Reed 2002; but see Halpern
& Kelly 1993; Nagai & Yagi 2001), the future or expected trajectory of a target (Hubbard &
Bharucha 1988; Verfaillie & d’ Ydewalle 1991), and visual attention (Hayes & Freyd 2002).
Finally, Nagai and Saiki (2005) found that RM is elicited in the physical/actual direction
and actual speed of an object’s motion but not in its perceived direction and speed when
the physical/actual versus perceived motions are different. Thus, a variety of factors affect
RM: from low-level, perceptual factors such as a moving object’s speed and acceleration
to higher-level, cognitive factors such as expectation, attention, and each object’s typical
motion in the real world.

When a brief flash is presented adjacent to a continuously moving stimulus, the flash
appears to lag behind the moving object. This flash-lag effect, FLE (Frohlich 1923; Metzger
1932; Mackay 1958; Nijhawan 1994), is also robust and has been replicated in various
stimulus configurations (Baldo & Klein 1995; Khurana & Nijhawan 1995; Nijhawan 1997,
Kirschfeld & Kammer 1999; Brenner & Smeets 2000; Eagleman & Sejnowski 2000a;
Khurana et al. 2000; Watanabe et al. 2001; Watanabe et al. 2003; Watanabe 2004). Several
factors are known to influence the FLE. The FLE increases as the luminance of the moving
object is increased and decreases as the luminance of the flash is increased (Purushothaman
et al. 1998). It increases as the retinal eccentricity of the flash is increased (Baldo &
Klein 1995). Recently, Anstis (2007) found FLE occurs in the physical, not the subjective,
direction of rotation. In addition to these low-level stimulus factors, perceptual grouping
causes a large modulation of FLE magnitude (Watanabe et al. 2001; Watanabe 2004). FLE
is reduced when the observer knows when and where the next flash is to occur (Brenner
& Smeets 2000; Eagleman & Sejnowski 2000b; also see Nagai et al. 2000). Lastly, there
is an ongoing debate about whether FLE is affected by attention (Khurana et al. 2000;
Baldo et al. 2002). Thus, it is unclear whether the factors influencing FLE are limited to
low-level or perceptual ones or also include higher cognitive factors similar to the factors
affecting RM. Previously, it was shown that forward motion of objects that have a normal
motion direction (e.g., animals that typically move headfirst) causes a larger RM effect than
backward motion (Freyd & Miller 1992; Reed & Vinson 1996; Vinson & Reed 2002). Here
we tested whether knowledge of an object’s typical motion in the world influences FLE
and directly compared it with that of RM. If such knowledge influences FLE, then forward
motion would cause larger FLE than backward motion.

21.2 A flash-lag effect experiment

Here we tested the influence of object-typical motions on FLE. There were three different
conditions: forward, backward, and stationary conditions (i.e., control condition). In the
forward condition, the picture of a car moved forward, whereas in the backward condition
it moved backward. In the control condition, the picture did not move. If the influence
of object-typical motions exists in the FLE, then FLE in the forward condition should be
larger than in the backward condition, as shown in RM studies (Freyd & Miller 1992; Reed
& Vinson 1996; Vinson & Reed 2002).
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Fig. 21.1 An example of picture stimuli used in the flash-lag experiment.

21.2.1 Method
21.2.1.1 Observers

Six adults (age range 20-27 years; mean = 21.6 years) served as participants. They all had
normal or corrected-to-normal vision.

21.2.1.2 Apparatus

The stimuli were produced using an Apple Power Macintosh G4 computer (with Mac
OS 9.2) and were displayed on a CRT monitor (Sony 21-inch color monitor, refresh
rate 75 Hz) in a dimly lit room. The viewing distance was 57 cm, and a chin rest was
employed to maintain constant viewing distance.

21.2.1.3 Stimuli

Stimuli were presented on a gray background. The moving object was a picture of a car,
as shown in Fig. 21.1. The picture size was 1.2-deg wide and 0.7-deg high. A white
fixation cross was presented at the center of the screen, and a white dot (0.08 deg in
diameter) was presented as a flash probe. The object moved horizontally by 5 pixels per
frame (corresponding to 7.5 deg/s), with the movement trajectory above the fixation point.
The distance in the vertical dimension from the fixation point to the bottom of the car
was approximately 0.2 deg. The flash was presented for one frame (& 13.3 msec) 1.4
deg above the fixation point. The vertical distance between the roof of the car and the
position of the flash was approximately 0.5 deg. The car picture appeared 5.6 deg left or
right from the fixation point, moved toward the center of the screen, and went through
to the opposite side of the screen. The duration of the complete motion sequence was
1533.3 msec (115 frames). The flash and the fixation point were always aligned on the
vertical axis. However, the relative horizontal position between the flash and the car picture
varied from trial to trial according to lag condition.

21.2.1.4 Procedure

The observer’s task was to decide whether the flash appeared to the left or right relative
to the “center” of the car picture (two-alternative forced choice (2AFC)). Observers were
strictly instructed to fixate on a fixation cross while it was presented on the screen.
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The experimental design was as follows. For the factor of object motion, there were
three types of motion. In the conditions in which the car picture moved (forward, backward
conditions), the picture was initially presented 5.6 deg left or right of fixation. When the car
picture appeared on the left side, it moved toward the right, and vice versa. The car picture
moved at a constant speed of 7.5 deg/sec to the opposite side of the fixation point. When
the car picture reached 5.6 deg to the opposite side of the fixation point, it disappeared. In
the condition in which the car did not move (stationary condition), the picture was presented
above the fixation point (with spatial shift according to lag condition) for 1533.3 msec. For
the factor of object orientation, there were two types of object orientation, the picture of
the car facing left or facing right.

As for the factor of horizontal lag between the flash and the picture of the car, we used
seven different lags: —0.6, —0.4, —0.2, 0, 0.2, 0.4, 0.6 deg (—6, —4, —2, 0, 2, 4, and 6
temporal frames in the time domain). We expediently defined the horizontal midpoint of
the car picture as its center. When the lag was 0 deg, the flash appeared above the fixation
cross when the center of the car was just above the fixation. In other lag settings, when the
lag was —0.6 deg, the flash was presented six temporal frames before the center of the car
picture reached a point directly above the fixation point. Observers performed 672 trials in
total: 3 (leftward motion, rightward motion, or stationary) x 2 (facing left or right) x 7
(different lag settings) x 16 (repetitions of each condition).

At the beginning of each trial, the fixation cross was presented at the center of the screen.
The car picture appeared on the screen 500 msec after the fixation cross appearance. In all
conditions the car picture was presented for 1533.3 msec. Observers made their responses by
pressing the left or right arrow key, after which the fixation cross disappeared. No feedback
was given to the observers. The next trial was then presented with a 1-sec intertrial interval.
A short break was given to the observers every sixty trials (approximately once every
4 min), which the observers used to take a short rest if needed. Prior to the experiment,
observers completed a practice session consisting of thirty trials. The entire experiment
time was about 60 min, including instruction and practice session.

21.2.2 Result and discussion

Figure 21.2 shows the averaged FLE in each condition for six observers in the FLE exper-
iment. The data were collapsed across motion direction because there was no difference
between leftward and rightward motion, and recombined into forward (leftward-facing left
trials and rightward-facing right trials) or backward motion (leftward-facing right trials
and rightward-facing left trials). Thus, in this experiment, the actual amount of flash lag
was defined as the difference between the stationary condition (which was used to estimate
each observer’s “subjective” center of the car picture) and the forward motion condition,
or between the stationary condition and the backward motion condition. For each observer,
we derived a psychometric function and calculated the 50% probability of judging “left” or
“right” for each of the conditions. We observed significant differences between conditions
(F(2, 10) = 14.5, MSE = 20.7, p < .01). The FLE was significantly smaller for the
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Fig. 21.2 Result of flash-lag experiment.

stationary condition than for the other two conditions (p < 0.01 for both forward and
backward conditions), which indicates that FLE occurred in this display. Then, we took
the difference in the probability judgment between the forward motion condition and the
stationary condition as representing the actual amount of FLE in forward motion, and the
difference in the probability judgment between the backward motion condition and the
stationary motion condition as representing the actual amount of FLE in backward motion.
A separate statistical analysis revealed that the difference in FLE between the forward
motion condition and the backward motion condition was significant [#(5) = 5.5, p < 0.01].
A larger FLE occurred for the backward motion condition than for the forward motion
condition.

This result, that backward motion produced larger FLE than forward motion, was surpris-
ing, because it was opposite to the findings in RM (Freyd & Miller 1992; Reed & Vinson
1996; Vinson & Reed 2002). We replicated this result with a different stimulus (a picture of
a fish shown in Fig. 21.3), and thus the effect of forward/backward motions on FLE (i.e., the
opposite effect shown in RM) seems robust. It is worth considering the quality of motion
(discrete or smooth motion) in discussing knowledge-based effects. In RM, with discrete
motion, the effect of typical motion was consistently found (Reed & Vinson 1996; Vinson
& Reed 2002), but it was not consistently found with smooth motion (Freyd & Miller 1992;
Nagai & Yagi 2001). These findings suggested that discrete motion of an object was better
to show a typical motion effect in RM. However, in the present experiment, we followed
a standard experimental procedure of FLE studies for better comparison of FLE with RM.
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Fig. 21.3 Example of stimuli used in preliminary test.

Before we consider why the effect in FLE was opposite to that in RM, it is necessary to
confirm the typical motion effect in RM with smooth motion.

21.3 Representational momentum experiment with left or right judgment

As mentioned in the introduction, previous studies of RM have shown that conceptual
knowledge of objects’ and animals’ typical motions in the real world influenced the mag-
nitude of RM (Freyd & Miller 1992; Reed & Vinson 1996; Vinson & Reed 2002; but see
Halpern & Kelly 1993!; Nagai & Yagi 2001). However, the typical motion effect was not
consistently observed with smooth motion: for example, Freyd and Miller (1992) showed
the effect, but Nagai and Yagi (2001) did not. Here we tried to replicate the typical motion
effect with smooth motion. A standard RM paradigm employs the same—different judg-
ment between the final position of the moving stimulus and the position of the subsequently
presented probe. However, in this experiment, the left or right judgment as in the FLE exper-
iment was used to allow a more direct comparison between the typical motion effects on
FLE and RM.

21.3.1 Method

21.3.1.1 Observers

Six adults (ranged 20-27 years; mean = 22.3 years) served as participants. They all had
normal or corrected-to-normal vision. Three of those participants had participated in the
flash-lag experiment.

21.3.1.2 Stimuli

The stimulus used for the moving (or staying) object was the same picture of a car as used
in the FLE experiment. In this RM experiment, no fixation point or flash was presented
because keeping eyes at the fixation point reduces the magnitude of RM (Kerzel 2000; Nagai
& Saiki 2006), and elements other than a moving object bias the judged final position of

! In Halpern and Kelly (1993), only forward discrete motions of a fox, a motorcycle, a rhinoceros, a truck, and a ball were used,
and they did not show consistent effect of typical speeds in the real world like a truck moves faster than a fox. In contrast, most
of the studies used forward and backward discrete motions of real-world objects and showed different magnitude of RM for
these two motions (Freyd & Miller 1992; Reed & Vinson 1996; Vinson & Reed 2002). These suggest that comparing forward
and backward motions was a sensitive way to show typical motion effects and the relative difference in typical speed between
objects could not affect RM. In the present study we used the sensitive method to examine the typical motion effect.
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the object to the other element (Hubbard & Ruppel 1999). The car picture appeared at the
same position (5.6 deg left or right from the horizontal center of the display) and moved
with the same speed (or remained still as in FLE stationary condition).

The disappearing location of the object was randomly set from trial to trial, in the range
from —1.0 to +1.0 deg from the exact center of the screen. In the forward and backward
motion conditions, the motion duration differed according to where the object disappeared.
When the object disappeared at the center of the screen, motion duration was 746.48 msec
(ranged from 613.1 msec to 879.8 msec). In the stationary condition, the car picture was
presented near the center of the screen (at the center with spatial jitter ranged from —1.0
to +1.0 deg) for 746.48 msec. After the car picture disappeared, observers were shown
a blank display (entirely gray) for 1 sec. After this retention interval, the car picture was
shown again as a probe, with a spatial displacement according to condition. This probe
picture remained on the screen until participants’ response.

21.3.1.3 Procedure

The observer’s task was to decide whether the probe appeared to the left, or right, rela-
tive to the car picture in the final frame (two-alternative forced-choice). Observers were
not informed whether they should track the moving stimulus or not, as in the standard
experiment paradigm of RM.

The experimental design was similar to that of the FLE experiment except for the probe
presentation. There were seven different probe positions (—0.6, —0.4, —0.2, 0, +0.2, +0.4,
+0.6 deg). Positive values indicate that the probe was shifted in the direction of the picture
motion from the final position of the car picture. Observers performed 672 trials in total:
3 (leftward motion, rightward motion, or stationary) x 2 (facing left or right) x 7 (probe
positions) x 16 (repetitions per condition).

The beginning of each trial was indicated with a short beep sound. The car picture
appeared on the screen 500 msec after the beep. Observers made their response by pressing
the left or right arrow key. No feedback was given to the observers. They went on to the
next trial, after 1 sec of intertrial interval. A short break was inserted every sixty trials
(approximately once every 5—6 min), and observers took a rest if they needed to. Prior to
the experiment, observers completed a practice session consisting of thirty trials. The entire
experiment time was about 70 min including instruction and practice session.

21.3.2 Result and discussion

Figure 21.4 shows the averaged RM shift in each condition for six observers. The shift
was defined as judged error relative to the final position. Collected data were collapsed
across motion direction (there was no difference between leftward and rightward motion)
and recombined as forward (leftward-facing left trials and rightward-facing right trials) or
backward motion (leftward-facing right trials and rightward-facing left trials).

The overall results resemble those of the previous FLE experiment. The magnitude of
RM was nonsignificantly larger for backward motion than for forward motion. However, we
found no significant difference from the zero baseline for any conditions, which indicates
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Fig. 21.4 Result for RM experiment, when judging whether the probe was shifted left or right from
final frame.

that no significant RM shift occurred in this experiment. This might be due to the task
we used. In this experiment, to make a direct comparison between the FLE and RM
experiments, we asked observers to decide whether the probe shifted left or right. In the
next experiment, we used a same/different judgment paradigm, which is the method more
widely used in RM studies (e.g., Freyd & Finke 1984).

21.4 Representational momentum experiment with same/different judgment

In the previous RM experiment with the left/right judgment, the results showed no RM
effects. In this experiment, each observer performed the same/different judgment on the
position of the probe, but the other stimuli settings and procedures were kept identical to
those in the previous experiment. This procedure was expected to increase the RM effect
and to show the typical motion effect.

21.4.1 Method

21.4.1.1 Observers

Nine adults (ranged 19-31 years; mean = 22.2 years) served as participants. None had
participated in the previous two experiments. They all had normal or corrected-to-normal
vision.




1V Spatial phenomena: forward shift effects

1r

—@— FORWARD
—&— BACKWARD
—&—STATIONARY @

w
%)
P4
(]
e
7]
w
i
w
=
<
)
w
(e]
z
]
[ o
T
o]
ot
o]
i
@

0 1 1 1 1 1 ]
—0.6 -0.4 -0.2 0 0.2 0.4 0.6
PROBE SHIFT TOWARD MOTION DIRECTION
(deg/arc)

Fig. 21.5 Same response proportion and quadratic fit.

21.4.2 Result and discussion

Figure 21.5 shows the averaged proportion of the same response in each condition for
nine observers in this second RM experiment with the same/different judgment. For each
observer’s data, we calculated a weighted mean for each condition. Figure 21.6 shows the
average weighted mean and standard error for each condition. Statistical analyses revealed
that the weighted mean in the forward condition was significantly larger than zero (#(8) =
1.9, p < .05) but was not in the backward or stationary conditions.

With the same/different judgment, we observed significant RM and the expected effect
of forward versus backward motions. This suggests that the typical motion effect shown in
previous discrete-motion RM studies (Freyd & Miller 1992; Reed & Vinson 1996; Vinson
& Reed 2002) can also be observed with smooth motion, although the magnitude of it was
small (but see Nagai & Yagi 2001).

21.5 General discussion

These studies aimed to directly compare the typical motion effects in FLE and RM. The first
experiment showed that FLE was larger for a car’s backward motion than for its forward
motion; thus FLE shows a reversed-typical motion effect. This was the robust effect because
it was replicated also with the motion of a biological object (e.g., a fish). Although it was
the opposite to the typical motion effect found previously for RM, this study consistently
showed the influence of higher cognitive knowledge about objects’ typical motions on FLE.
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The second experiment did not show any RM for the left/right judgment task. The third
experiment used the same/different judgment and replicated RM and typical motion effects
that had been consistently observed before with discrete stimulus presentation (Reed &
Vinson 1996; Vinson & Reed 2002). Although we used different tasks in FLE and RM,
we presented the same motion stimuli in both FLE and RM experiments. Thus, the present
study provides the first basis for comparing and discussing the effect of cognitive knowledge
on the two motion-based spatial errors.

Here we attempt to explain the discrepant results between FLE and RM with two different
typical motion effects: a “perceived speed” while a moving object is actually presented
versus an “internal model speed signal” after the object has disappeared. In the real world,
cars move forward most of time when they move, and their backward motions are much
less frequent. Thus, humans could have an internal model for each type of object’s typical
motions: for example, a car mostly moves forward and only sometimes backward. In the
case of car motion, the subjective speed estimate from the internal model would be larger
for forward motion and smaller for backward motion. However, because objects in both
forward and backward conditions move with the same actual speed on the CRT display, the
difference between incoming sensory input and the output of the internal model would be
smaller for forward motion and larger for backward motion. If perceptual speed is modified
by the magnitude of such a difference (or subjective prediction error), then the perceived
speed of backward motion would be larger than forward motion, and thus FLE would be
larger for backward motion.

In the RM experiment paradigm, however, this perceived speed modulation by subjective
prediction error could not occur, and only the internal model speed could influence the
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magnitude of RM. The critical difference between FLE and RM stimulus presentations
was whether the car’s motion was still presented at the time of the “judgment marker.”
In the FLE experiment, the car motion was still presented at the time of the flash, and
observers could access and use this sensory input signal to make their judgment. Thus,
the perceived speed modulation (based on the subjective prediction error) influenced the
magnitude of FLE. However, in the RM paradigm, no moving car was presented at the
time of probe presentation, which meant there was no sensory input signal of motion at
the time of judgment. Thus, the perceived speed modulation did not occur in the RM
paradigm, and we did not get the result that a car’s backward motion produced larger
RM than its forward motion. Instead, we suggest that the “internal model” on an objects’
typical motions influenced RM. After the moving car disappeared, observers could not use
the sensory input of the motion signal but used only the output speed signal of the internal
model of the object’s typical motions (e.g., a car moves faster for its forward than backward
motion). Therefore, larger RM for the forward motion was observed than for the backward
motion. This is the typical motion effect as found in previous studies (Freyd & Miller 1992;
Reed & Vinson 1996; Vinson & Reed 2002).

This internal model of an object’s typical motions could also work during the blank
screen intervals during discrete motion presentation. For example, in Vinson and Reed
(2002) the picture of the object was displayed for 250 msec and followed by a 250 msec
blank interstimulus interval (ISI). The motion sequence consisted of four frames of object
presentations interleaved with ISIs. In this discrete motion case, the internal model’s influ-
ence could be applied during each ISI, which would reduce the greater perceived speed for
backward motion, and which would increase the lower perceived speed for forward motion,
to yield the typical motion effect (i.e., the forward motion of a car or fish producing larger
RM than their backward motion).

In contrast, this study, Nagai and Yagi (2001) and Freyd and Miller (1992) used smooth
motion of the object (i.e., no ISI), thus some of them yielding the small typical motion
effect (this study) or no such effect (Nagai & Yagi 2001) in RM. In the case of smooth
motion, the typical motion influence by the internal model could not occur during its motion
presentation because there were no blank ISIs. Thus, this internal model influence might
be overcome by the perceived speed modulation based on the difference between sensory
input and internal model output because these two influences worked in opposite directions
to each other.

In sum, the present study found that knowledge of typical motions of objects influenced
both FLE and RM, although such knowledge differently affected them. This is the first report
that cognitive factors influence FLE. Many other factors can be examined and compared in
both FLE and RM: eye movements (in FLE, Nijhawan 2001; in RM, Kerzel 2000: Nagai &
Saiki 2006) and human internal models of physical laws (only investigated so far in RM:
gravity, implied friction, see Hubbard 1995b for review). We suggest that comparing the
influence of various cognitive factors on FLE and RM will lead to a better understanding
of spatial errors and motion perception mechanisms.
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