

Electron-Probe Microanalysis: Instrumental Calibration, Standards, Quantitative Analysis, and Problem Systems

Paul Carpenter Earth and Planetary Sciences 1 Brookings Drive Washington University St Louis, MO 63130 paulc@levee.wustl.edu

The Big Picture for EPMA

- Instrumental issues for EPMA:
 - Column-spectrometer alignment
 - Detector linearity and stability (flow, sealed)
 - WDS deadtime calibration
 - Spectrometer resolution, reproducibility
 - New developments: SDD EDS mapping and quantitative analysis
- EPMA Standards:
 - Proper selection of standards (sample vs. standard)
 - Internal consistency of stds in your lab vs. international environment
- Problem Systems:
 - Peak overlaps, high-order WDS interferences
 - Analytical problems, high absorption correction
 - Correction algorithms and mass absorption coefficient data sets
- Solutions:
 - Interlaboratory collaboration, education
 - Multiple KV and multiple spectrometer analysis of core std set
 - Payoff proof of internal std comps and empirical macs

Washington University, Saint Louis Earth and Planetary Sciences JEOL JXA-8200

Calibration Issues for Electron-Probe Microanalysis

- Microprobe performance specifications are:
 - Driven by capabilities and address problem solving for customers Capabilities are funded by purchases, user/vendor development Realistic specifications for WDS vs. EDS systems
- Instrument calibration during installation and testing Spectrometer alignment – to electron column and mutual agreement Detector linearity with count rate and deadtime issues Precision = reproducibility (mechanical, electronic) Accuracy = correct K-ratio measured
- Instrument calibration short vs. long term Consistent performance with time Accuracy in international interlaboratory environment
- Geological EPMA

CMAS silicate standards used for acceptance testing (CIT, WU)

Pulse-Height Analysis Wavelength-dispersive spectrometer

WDS PHA Measurement

•Low energy pulses must be discriminated from baseline noise. Need proper setting of noise threshold, baseline, and window settings of WDS pulse height analyzer.

•The pulse processing circuitry of WDS does not need to deal with pulse shaping like that of EDS, and is inherently faster.

•Pulse energy shift with varying count rate results in instability. At high count rates pulses are poorly discriminated from baseline noise. Use similar count rates on standard and sample.

•Avoid tight PHA window, use integral mode unless a PHA interference is observed.

•The P-10 detector gas flow rate must be stable or else gas amplification factor varies, and so does count rate.

•Temperature variation will affect gas amplification factor as well as thermal expansion of analyzer crystal.

•Low energy peaks need to be integrated due to peak centroid and peak shape/area factors. Use area-peak factor or perform integration.

Detector Bias Scan Si Kα Vary Bias at PHA Narrow Window

Detector bias scan using 3.9 volt baseline and 0.2 volt window on PHA. Intended to minimize energy gain shift of PHA.

- MSFC Spec 1, P-10 flow counter, TAP, 64x gain, Si K α on SiO₂ metal @ 10k cps. $\frac{1}{18}$

Detector PHA Scan Si K α

For Si K α there is good separation between baseline and Si pulses. Nominal baseline is 0.5 V with 9.5 V window (integral mode) MSFC Spec 1, P-10 flow counter, TAP, 64x gain, Si K α on SiO₂ @ 10k cps.

UU EFINIA WORKSHUP 2008

Calibration of PHA Using Bias vs. ln(E) plots

- For JEOL microprobe want SCA pulse at 4 volts, Cameca at 2 volts
- Spectrometer at peak position
- Bias scan with 3.8v base, 0.2v window gives bias for 4 volt SCA
- Plot of bias vs ln of x-ray energy is linear
- Calibration performed for minimum element set which spans energy range of spectrometer for all analyzing crystals
- Detector should give same bias for Ti K α on PET vs. LIF, others
- Calibration confirms systematic behavior of x-ray counter
- As P-10 tank empties and Ar/CH_4 changes, requires recalibration
- Use y = mx + b fit to bias data to provide quick calibration
- Similar plot for escape peak as function of x-ray energy

PHA Bias Plot for LIF/PET Data

Si, Ti, Ni Bias data at 8, 16, 32, 64, and 128x Gain

WU 8200 Detector Bias Spectrometer 3

Settings for 4 Volt Pulse

Gain Shift Due to Count Rate

Gain shift due to count rate, detector bias arbitrarily set to 1700 volts.
Observed shift is ~ 0.008 volts per 1 K cps (1.95 volt shift over 245 K cps range).
At ~125k cps baseline noise discrimination deteriorates.
Older PCS electronics exhibit complete shift into baseline noise.
MSFC Spec 1, P-10 flow counter, TAP, 32x gain, Si Kα on Si metal.

PHA Scan Ti La 20K CPS

Light element / low energy x-rays are poorly resolved from baseline noise. Gain shifts with count rate – PHA peak shifts toward baseline with increasing count rate. Use integral mode unless PHA energy discrimination required – counts extend to upper limit of PHA scan.

MSFC Spec 1 with P-10 flow counter, LDE2, 128x gain, Ti La on Ti metal @ 20k cps.

Carbon Ka PHA Scans Graphite, Fe3C

Deadtime Measurement on the Wavelength-Dispersive Spectrometer

WDS Deadtime Issues in EPMA

- Deadtime time interval during which counting electronics are unable to process subsequent incoming pulses
- Deadtime error is non-negligible, systematic, affects all measurements
- General problem:
- Counting behavior of WDS systems is undocumented and poorly known
- End-users make measurements with assumed WDS deadtime behavior
- User knowledge of deadtime issues needs improvement
- Specific problem areas:

No software to conveniently evaluate deadtime on turnkey systems No agreed method for setting bias, gain, and sca on systems SCA pulse shift behavior with count rate undocumented Deadtime dependence on X-ray energy undocumented and unknown Low vs. high count rate behavior and deadtimes inconsistent

Deadtime Behavior: Extending vs. Nonextending

Deadtime Losses Input – Output Curves for µsec Deadtime Constants

Percentage Deadtime Losses

Percent Level Corrections Apply to All Measurements

Deadtime Relations Calculation of Deadtime Constant

• $N = true count rate, N_m = measured count rate with$ $N = \frac{N_m}{(1 - N_m \tau)}$ deadtime losses (N_m < N), and τ is the deadtime constant, which ranges from 1 to several µsec for WDS counting systems. It is necessary to know N_m and N to calculate τ . We assume the proportionality of N to the probe current i is constant. This may not be true at low count rates. $\frac{N_{\rm m}}{I} = c(1 - N_{\rm m} \tau)$ • $N_m / i =$ measured count rate in counts per second per nA, and c is the constant N / i Form: y = mx + b (N_m / i) is y, x is N_m , y-intercept b is constant c (= N / i). $\tau = \frac{\left[1 - \left(N_{m} / i\right) / c\right]}{N_{m}} \bullet \text{Equivalent to } \tau = (1 - y / b) / x$ Measure x-ray intensity at increasing probe current Use count rate N_m and N_m / i to evaluate the deadtime constant τ over a range of intensity values

Deadtime Evaluation Plot N_m vs. N_m / i to determine LS Fit to τ

Verification of Probe Current vs. Absorbed Current Linearity and/or Detection of Sample Charging

Deadtime Calculation from Excel Spreadsheet

nA	Abs Cur	Abs/Probe	Time	Cps (x)	Cps/nA (y	Fit All	Fit Last	DT us All	DT Last
2.00	1.63	0.82	100	4607.9	2302.57	2299.81		0.61	
5.00	4.05	0.81	80	11436.9	2287.20	2286.17		0.83	
10.01	8.10	0.81	80	22665.3	2264.44	2263.73		0.85	
20.05	16.25	0.81	60	44469.0	2217.95	2220.18		0.89	
25.00	20.29	0.81	60	54977.1	2199.08	2199.18	2197.08	0.87	0.83
29.98	24.34	0.81	30	65298.1	2177.91	2178.56	2177.00	0.87	0.84
35.02	28.54	0.81	30	75474.9	2155.07	2158.23	2157.20	0.88	0.86
40.05	32.53	0.81	30	85510.0	2134.97	2138.18	2137.67	0.88	0.86
49.99	40.74	0.81	30	105026.6	2101.04	2099.19	2099.70	0.86	0.84
69.98	57.25	0.82	30	141942.7	2028.45	2025.44	2027.88	0.86	0.84
Regression Output:						Mean deadtime		0.86	0.84
All	Y intercept		2309.01	Slope	-0.0020	Sigma		0.02	0.01
High CR	igh CR Y intercept			Slope	-0.0019	Regression DT		0.87	0.84

Excel Sheet: X is N_m and Y is N_m/i . Deadtime evaluated from each intensity (DT) and from least squares fit to data (Fit) using Excel *linest* function. All data and high intensity only data are compared with average values (Mean deadtime) and standard deviation. Ratio of absorbed/probe current checks conductivity. If linear all data agree.

Deadtime Variation with Count Rate

Deadtime Variation With Time and P-10 Gas Chemistry Comparison of Original and New Tracor PCS Electronics

Alignment and Quantitative Analysis: Wavelength-Dispersive and Energy-Dispersive Spectrometers

Establishing Calibration of an Electron Microprobe

- Wavelength spectrometer aligned vertically (baseplate) to coincide with optical microscope focal point in z-space
- Diffracting crystal aligned to be on Roland circle
- All WDS should focus on same z-axis and coincident xy area ~ 50 um in diameter
- Characteristics of correct alignment
 All WDS & EDS have identical X-ray takeoff angle
 Maximum X-ray intensity at z focus position, but also require:
 Measure identical k-ratio within counting statistics
- Simultaneous k-ratio measurement is ultimate test of alignment
- Initial CMAS standard set used on Caltech MAC and JEOL JXA-733
- Expanded CMASTF standard set used for Wash U JXA-8200

Electron Microprobe Column Spectrometer Alignment: Baseplate and Crystal

Baseplate: Place Rowland circle at Z focus **Crystal**: Align all crystals on Rowland circle Spectrometer design keeps detector on RC Note: Different K-ratio = misalignment **Multiple spectrometer comparison required** to demonstrate all WDS and EDS are mutually aligned

CMASTF Silicate Standards

Geological materials are multicomponent

- End-member stoichiometric silicate and oxide mineral standards
- Primary standards:

MgO, Al₂O₃, SiO₂, CaSiO₃ (CaO 48.27, SiO₂ 51.73), TiO₂, and Fe₂O₃

- Analyzed suite of stoichiometric standards, natural and synthetic materials: Second set of primary standards on different mounts
 Spinel MgAl₂O4, Enstatite MgSiO₃, Forsterite Mg₂SiO₄
 Kyanite Al₂SiO₅
 Fayalite Fe₂SiO₄
- Well characterized natural mineral standards and glasses:

Olivines $(Mg,Fe)_2SiO_4$ Diopside CaMgSi_2O_6, Anorthite CaAl_2Si_2O_8, Sphene CaTiSiO_5 Ilmenite FeTiO_3 Synthetic glasses in CMAS and CMASF system:

Weill CMAS glasses, NBS K411, K412

CMASTF Standard Inventory: Natural & Synthetic Composition in Wt% Oxide

						FeO* or
Standard	MgO	Al2O3	SiO2	CaO	TiO2	Fe2O3
Alaska Anorthite		36.03	44.00	19.09		0.62
Boyd Olivine	51.63		40.85			7.17
Ilmen Mtns Ilmenite	0.31				45.70	46.54
K411 Glass	14.67	0.10	54.30	15.47		14.42
K412 Glass	19.33	9.27	45.35	15.25		9.96
Kyanite P236		62.91	37.09			
Natural Bridge Diopside	18.31	0.06	55.40	25.78	0.01	0.26
ORNL, RDS Fayalite			29.49			70.51
San Carlos Olivine	49.42		40.81			9.55
Shankland Forsterite	57.30		42.70			
Springwater Olivine	43.58		38.95			16.62
Taylor Kyanite	0.00	62.70	37.00			0.16
Taylor Olivine	50.78		41.15			7.62
Taylor Sphene		1.36	30.83	28.82	37.80	0.66
Taylor Spinel	28.34	71.66				
Weill A	11.05	16.07	49.72	23.15		
Weill B	13.99	16.05	48.99	20.97		
Weill D	17.97	20.96	45.07	16.00		
Weill E*	6.00	8.99	79.9 7	5.04		
Weill Enstatite Glass	40.15	0.00	59.85			
Weill F	10.07	30.93	52.06	6.94		
Weill G	32.69	3.31	61.12	2.89		
Weill H	5.22	41.90	30.91	21.97		
Weill I	19.03	2.01	52.95	26.01		
Weill J	1.01	19.02	42.98	36.99		

Pouchou Experimental Binary K-ratio Data Set (n=756) $\Phi(\rho z)$ Algorithm – No silicates or multi-element materials

Ag La NIST SRM 481 AgAu Alloy (ψ =40)

Accuracy Study for EPMA Comparison of Measured to Calculated K-ratio

•K _{measured} dependent on: Accelerating Potential Probe current Detector (gas, sealed)	$K_{\text{measured}} = \frac{(P - B)^{\text{sample}}}{(P - B)^{\text{standard}}}$
 Pulse processing PHA calibration Deadtime Spectrometer alignment Sample homogeneity P-B determination, stripping, counting statistics Other sampling/drift factors 	C = K * ZAF $K_{calculated} = C / ZAF$
•K _{calculated} dependent on: Correct composition of standard Correction algorithms Data sets, mass absorption coefficients Other algorithmic factors	Evaluate: $\frac{K_{\text{measured}}}{K_{\text{calculated}}}$

Historical CMAS Data Caltech MAC Probe, Circa 1980's

Caltech JEOL 733 1990's Spectrometer 1 TAP for Mg Al Si (Ca PET)

Shaw Data Set: Caltech Jeol 733 -- TAP1 MgAlSi PET3 Ca Armstrong φ(ρz), FFAST macs, 15 kV

Caltech JEOL 733 1990's Spectrometer 2 TAP for Mg Al Si (Ca PET)

Shaw Data Set: Caltech Jeol 733 -- TAP2 MgAlSi PET5 Ca Armstrong $\phi(\rho z)$, FFAST macs, 15 kV

Caltech JEOL 733 1990's Spectrometer 4 TAP for Mg Al Si (Ca PET)

Shaw Data Set: Caltech Jeol 733 -- TAP4 MgAlSi PET5 Ca Armstrong $\phi(\rho z)$, FFAST macs, 15 kV

Caltech JEOL 733 1990's Spectrometer 124 TAP for Mg Al Si (Ca PET)

Shaw Data Set: Caltech Jeol 733 -- TAP124 MgAlSi PET35 Ca Armstrong $\phi(\rho z)$, FFAST macs, 15 kV

Caltech JEOL 733 1990's Spectrometer 124 TAP for Mg Al Si (Ca PET)

Shaw Data Set: Caltech Jeol 733 -- TAP:1Mg 2Al 4Si Armstrong φ(ρz), FFAST macs, 15 kV

Intercomparison of Measured vs. Accepted Concentration for Standards on Microprobes

Instrument	C _{meas} /C _{calc} Mg	C _{meas} /C _{calc} Al	C _{meas} /C _{calc} Si	C _{meas} /C _{calc} Ca
MAC, avg	1.0030	0.9948	0.9940	1.0077
MAC, 1sd	0.0105	0.0171	0.0058	0.0107
Caltech 733 Spec 1 MgAlSi, avg	0.9909	1.0000	0.9977	0.9993
Caltech 733 Spec 1 MgAlSi, 1sd	0.0083	0.0123	0.0058	0.0068
Caltech 733 Spec 2 MgAlSi, avg	0.9877	0.9847	0.9901	0.9963
Caltech 733 Spec 2 MgAlSi, 1sd	0.0086	0.0122	0.0064	0.0064
Caltech 733 Spec 4 MgAlSi, avg	0.9783	0.9862	0.9938	0.9971
Caltech 733 Spec 4 MgAlSi, 1sd	0.0095	0.0101	0.0059	0.0096
Caltech 733 Mg1Al2Si4, avg	0.9894	0.9817	0.9905	0.9984
Caltech 733 Mg1Al2Si4, 1sd	0.0077	0.0188	0.0061	0.0063

WU JXA-8200 CMASTF Data Set All WDS Data Superimposed

WU JXA-8200 CMASTF Data Set Spectrometer 1 PET and TAP

WU JXA-8200 CMASTF Data Set Spectrometer 2 TAP

WU JXA-8200 CMASTF Data Set Spectrometer 3 PET and LIF

WU JXA-8200 CMASTF Data Set Spectrometer 4 PET and LIF

WU JXA-8200 CMASTF Data Set Spectrometer 5 PETH and LIFH

Average K_{meas} / K_{calc} for CMASTF Standards Washington University JEOL 8200

WDS	Spec 1	Spec 2	Spec 3	Spec 4	Spec 5
Mg TAP	0.9997	0.9971			
Al TAP	0.9950	0.9946			
Si TAP	0.9981	0.9955			
Si PET	0.9855		0.9865	0.9837	0.9880
Ca PET	1.0013		1.0064	1.0035	1.0101
Ca LIF			0.9908	0.9948	0.9989
Ti PET	1.0000		1.0059	1.0044	1.0115
Ti LIF			0.9919	0.9949	1.0084
Fe LIF			0.9962	1.0051	1.0131

Accuracy, 1σ % Error in K_{meas} / K_{calc} CMASTF Standards Washington University JEOL 8200

WDS	Spec 1	Spec 2	Spec 3	Spec 4	Spec 5
Mg TAP	0.65	1.30			
Al TAP	1.06	1.22			
Si TAP	0.74	0.64			
Si PET	0.71		0.71	0.75	0.70
Ca PET	0.79		0.73	0.70	0.74
Ca LIF			0.74	0.92	0.69
Ti PET	2.27		1.44	0.98	1.54
Ti LIF			0.61	1.15	1.14
Fe LIF			1.75	1.27	1.26

WU JXA-8200 CMASTF Data Set All WDS Data Superimposed Expanded Scale

Washington University Earth and Planetary Sciences JEOL JXA-8200 SDD

JEOL e2v Silicon Drift Detector
130 eV resolution
3 time constants T3 T2 T1
Stage and beam mapping
Quantitative EDS analysis LLSQ

JEOL 8200 Stage Maps: Lunar Meteorite SAU169 WDS vs. SDD Mg @ 15KV, 120nA, 25ms dwell

Mg WDS 1061 max counts, Mg SDD 527 max counts 1024x1024 stage map, 8 hours

Lunar Meteorite SAU169 Stage map 1024x1024, 25 ms, 8 hr run

Backscattered electron vs. Fe SDD maps

Lunar Meteorite SAU169 Stage map 1024x1024, 25 ms, 8 hr run: Ca SDD

WU8200 JEOL SDD ⁵⁵Fe Source Mn Kα Resolution 130 eV

SDD Performance Data: WU8200 SDD Mn Target, T1 15 KeV, 100 sec

SDD Performance Data: WU8200 SDD Mn Target, T3 15 KeV, 100 sec

WU8200 SDD Mn K Spectra T3, 100 sec

WU8200 SDD Mn K Spectra T1, 100 sec

WU8200 SDD Mn L Spectra T3, 100 sec

WU8200 SDD Mn L Spectra T1, 100 sec

WU8200 Probe Current vs. Count Rate

WU8200 SDD Deadtime vs. Count Rate

WU8200 SDD Count Rate vs. Resolution

WU8200 SDD Count Rate vs. Resolution for C, Si, Mn, Ni

Washington University JXA-8200 SDD Corning 95IRV: K, Ti, Cr, Fe, Ce, Hf

Washington University JXA-8200 SDD Corning 95IRW: V, Mn, Co, Cu, Cs, Ba, La, Th

Washington University JEOL JXA-8200 SDD Quantitative Analysis Data

- SDD great for mapping, what about quantitative analysis?
- SDD EDS data acquired at 120s, 60s, and 3s acquisitions at T3
- Standards used: MgO, Al_2O_3 , SiO_2 , $CaSiO_3$ (CaO 48.27, SiO_2 51.73), TiO_2 , and Fe_2O_3
- Linear least-squares peak deconvolution (JEOL software)
- Extracted raw K-ratios processed using Armstrong $\Phi(\rho z)$ and FFAST macs for comparison with WDS data

CMASTF Standard Analyses WU8200 SDD LLSQ 120 sec. Acquisition T3

CMASTF Standard Analyses WU8200 SDD LLSQ 60 sec. Acquisition T3

CMASTF Standard Analyses WU8200 SDD LLSQ 3 sec. Acquisition T3

Average Kmeas / Kcalc for CMASTF Standards WU8200 SDD Data @ 120, 60, 3 sec acquisition T3

120s Data	Mg	Al	Si	Ca	Ti	Fe
Average	1.0122	1.0064	1.0017	0.9926	1.0021	1.0108
1 σ	0.0063	0.0122	0.0078	0.0066	0.0106	0.0140
Relative %	0.62	1.21	0.78	0.67	1.06	1.38
60s Data						
Average	1.0058	1.0022	0.9969	0.9895	0.9975	1.0083
1 σ	0.0118	0.0162	0.0069	0.0066	0.0150	0.0113
Relative %	1.17	1.61	0.69	0.67	1.51	1.12
3s Data						
Average	1.0061	1.0135	1.0001	0.9933	0.9947	1.0123
1 σ	0.0162	0.0263	0.0104	0.0213	0.0118	0.0211
Relative %	1.61	2.59	1.04	2.14	1.19	2.09

EPMA Standards

Advances in EPMA: Geological Materials -- Standards

•EPMA standards requirements: Homogeneous on micron scale, grain to grain, well characterized on both scales, and available in large enough quantity to be used by microanalysis communities.

•Most materials fail one or more of these requirements.

•Natural and synthetic minerals, oxides, and glasses.

Minerals impose stoichiometry but may be inhomogeneous

Glasses lack stoichiometric control but can be homogeneous

•Glasses: targeted compositions that can be made in bulk and utilized by the microanalysis community.

(Corning 95-series trace element glasses)

•Internal consistency of EPMA standards used by the community is poorly known. Few comparison reports, generally anecdotal.

•Solution: calculate expected x-ray intensity for element of interest in suite of standards, compare measured intensities relative to end-member standard (oxide), i.e., k = ZAF / C. This highlights errors in composition as well as systematic errors in algorithm.
Basalt Glass Indian Ocean USNM 113716: EPMA vs. Wet Chemistry Data

Of the 3-5 mounts of UNSM 113716, this is the first observation of mineral inclusions or crystallites in the glass. This is otherwise a homogeneous standard, consistent with EPMA of other glasses, but based on wet chemistry comparison. **How representative is this of the wet chemical analysis?**

Olivine Standards: Mg-rich (Mg,Fe)₂SiO₄

Standard	Nat./Syn.	Minor/Trace Els.
Shankland forsterite Fo ₁₀₀	Synthetic	Fe?
Boyd olivine Fo ₉₃	Natural	Mn, Co, Ni, Zn?
LLNL "Fo85" (Fo ₉₃)	Synthetic	<none></none>
San Carlos olivine Fo ₉₀	Natural	Na?, Mg, Al, Ca, Ti?, Cr, Mn, Co, Ni
Fujisawa sintered Fo ₉₀	Synthetic	Al, Ca, Mn, Zn
LLNL "Fo80" (Fo ₈₅)	Synthetic	Al, Ca, Cr, Mn, Co?, Ni?
Springwater olivine Fo ₈₂	Natural	Ca, Cr, Mn
LLNL "Fo67" (Fo ₇₀)	Synthetic	<none></none>

Shankland from ORNL

LLNL olivines from George Rossman, Boyd and Fujisawa from Caltech

San Carlos and Springwater olivine from Smithsonian

Olivine Standards: Mn, Fe, Ni

Standard	Nat./Syn.	Minor/Trace Els.
Mn-olivine GRR-392	Synthetic	Fe
Mn-olivine RDS P-1087	Synthetic	Mg, Ca, Fe
Fayalite GRR-391	Synthetic	Mn
Fayalite RDS P-1086	Synthetic	Mg, Cr, Mn
Rockport Fayalite	Natural	Mg, Ca, Cr, Mn, Zn
Fayalite ORNL	Synthetic	Al?, Ca?, Cr
Ni-olivine P-877	Synthetic	Cr?, Fe, Co

GRR and RDS from George Rossman, P numbers Caltech probe standards Rockport Fayalite from Smithsonian

Rockport Fayalite

- RF is widely used as primary Fe standard
 - But Mg and Zn present, not in wet chemistry analysis [Low level oxides suspected to be variable not reported in wc analysis]
- Is ferric iron present? apparently not: Wet Chemistry: Fe₂O₃ 1.32, FeO 66.36 %, Tot: 99.18 Dyar XANES: RF iron is completely reduced.
- Grunerite in separate: $Fe_7^{2+}Si_8O_{22}(OH)_2$
- Magnetite at locality, in separate (Fe₂³⁺Fe²⁺O₄) ??
- Analysts should use EPMA analysis when using RF as primary standard.

Fayalite Standards

Oxide	Rockport Wet Chemistry	Rockport EPMA	RDS P-1086 EPMA	GRR391 EPMA**
MgO	Not reported	0.046	0.385	0
SiO ₂	29.22	29.99	30.04	(29.49)
CaO		0.045	0	0.004
Cr ₂ O ₃		0.059	0	0.010
MnO	2.14	2.13	0.092	0.212
FeO*	67.55	67.62	69.61	(70.34)
NiO		0.007	0.012	0.011
ZnO	Not reported	0.575	0.006	0.007
Total	99.18	100.48	100.16	(100.04)
$\Sigma~{ m M}^{2+}$	1.999	1.982	1.979	1.999
Si	1.001	1.009	1.010	1.000

Rockport WC: FeO 66.36, Fe₂O₃ 1.32, FeO* 67.55. TiO₂ 0.04, H₂O 0.1

EPMA: PAPF, olivine stds, Heinrich 1986 macs, 20KV, n=4 **GRR391 std Si, Fe $\frac{1}{1 \text{A Workshop 2008}}$

Systematic Errors in Olivine M²⁺₂SiO₄ PAPF, Heinrich 1986 macs @ 20 KV, 40 TOA

Olivine Group	Standard Type	Analysis Total	σ, wt%	Si cations 1 ideal	Ю	ΣM^{2+} 2 ideal	σ
Olivines	Oxide	101.14	0.42	0.989	0.004	2.023	0.007
	Syn. Olivine	100.22	0.37	0.994	0.003	2.012	0.006
Fayalites	Oxide	100.93	0.20	0.990	0.001	2.022	0.001
	Syn. Olivine	100.34	0.23	1.010	0.001	1.981	0.003
Mn,Ni	Oxide	99.32	0.33	0.991	0.003	2.018	0.006
Olivines	Syn. Olivine	100.07	0.30	1.002	0.003	1.995	0.005

Averages of total and cation stoichiometry for all olivines from test data set. For olivines, Mg/(Mg+Fe) = 0.860 ± 0.080 (ox) vs. 0.861 ± 0.079 (oliv). Identical k-ratios corrected using PAP full $\Phi(\rho z)$ and Heinrich 1986 macs, relative to oxide vs. synthetic olivine standards. Olivine Formula: $M^{2+}_{2}SiO_{4}$

Systematic Error Using Oxide Standards

Status Report: EPMA of Olivine

- EPMA using synthetic olivine standards better than oxide standards: Superior analysis total, Si cation ~1.0, and $\Sigma M^{2+} \sim 2.0$
- Improvement in EPMA accuracy for olivine using Armstrong $\Phi(\rho z)$ coupled with FFAST mac data set.
- Using oxide standards we observe: Overcorrection of Mg and Fe in olivine across Fo-Fa binary
 - Undercorrection of Si in low-Mg olivine (Fayalite, Mn-ol, and Ni-ol) Marginal underestimation of Mg/(Mg+Fe).
- These relationships extend to all MgFe silicates relative to composition.
- Alpha-factor analysis of systematic errors in Fo-Fa system: EPMA and wet chemistry of natural olivines are not internally consistent. Worst: Boyd Forsterite Mg and Fe not consistent (Caltech standard) Best: Springwater Mg,Fe, and Mg in San Carlos (Fe in SC less so)

Accuracy of EPMA: Quantitative Analysis of Olivine

Olivine EPMA Accuracy Study: Alpha factor method extended to olivine

Alpha factor (α-factor) method used to evaluate: Systematic errors for Φ(ρz) correction algorithms Internal consistency of EPMA-only data and EPMA vs. wet chemistry.

• Compositional end-members for α-factor systems:

Pure elements	Mg – Fe, i.e., Ziebold-Ogilvie
Pure oxides	MgO – FeO, i.e., Bence-Albee
Olivine binary	$Mg_2SiO_4 - Fe_2SiO_4$

- Synthetic olivines, pure Fo and Fa, used as primary standards for α -factor analysis.
- Natural olivines require projection onto Fo-Fa binary for comparison.
- Anticipate decreased reliance on correction algorithm and fundamental parameters as one moves from pure element end members to olivine end members. Measurement errors ultimately control accuracy.

Olivine Alpha Factor Study:

Comparison of Calculated and Measured Concentration

•Calculated α -factors using $\Phi(\rho z)$ algorithms and mass absorption coefficients and a polynomial fit to the individually calculated values.

C known, K calculated.

•Experimental α -factors extracted from olivine analyses.

K measured, C calculated.

Compared with calculated α -factors.

If measurements, algorithms, and data sets are correct,

all experimentally determined analyses would lie on theoretical lines.

•Wet chemistry data evaluated.

K measured, C obtained from wet chemistry.

If wet chemistry data, algorithms and data sets are correct,

all wet chemistry analyses would also lie on the theoretical lines.

Extraction of α -factors from Experimental Measurements

Analysis of Mg K α in Shankland Forsterite using MgO Std: Experimental Determination of α -factors

MgO Std – Shankland Fo Mg Kα Variation of α-factors with Composition, kV Multiple kV Analysis Highlights X-ray Absorption Errors

Mg Kα in Olivine Using Forsterite Standard Calculated and Experimental Data, Effect of MAC's

- 2. Good agreement EPMA of syn. and natural olivines, esp. H86, Henke using Armstrong $\Phi(\rho z)$.
- 3. Boyd Forsterite Mg value of wet chemistry inconsistent with wc of San Carlos and Springwater.

Fe Kα A-factors in Fo-Fa Binary Better accuracy compared to Mg

1. Minimal dependence on mac data set. Could calculate Mg by 2-Fe for binary olivines only.

08

- 2. Good agreement EPMA of syn. and natural olivines with Armstrong $\Phi(\rho z)$.
- 3. Continuum fluorescence important for Fo-rich olivines.
- 4. Boyd Forsterite and San Carlos Fe value of wet chemistry least consistent with others.

EPMA of San Carlos Olivine

Correction Method and macs @ 20 KV, 40 TOA

Oxide	Wet Chem	PDR	PAPF-1	Arm-1	PAPF-2	Arm-2	PAPF-3	Arm-3
		Ox / H66	Ox / H86	Ox / H86	Ol / H86	Ol / H86	Ol / FF	Ol / FF
MgO	49.42	50.10	50.04	49.82	49.44	49.44	48.98	49.00
SiO ₂	40.81	40.74	40.66	40.07	40.56	40.58	40.34	40.69
FeO*	9.55	10.13	10.08	9.89	9.89	9.89	9.89	9.74
Total	100.29	101.66	101.47	100.47	100.60	100.60	99.90	100.12
ΣM^{2+}	2.005	2.025	2.025	2.034	2.016	2.016	2.014	2.003
Si	0.997	0.986	0.986	0.982	0.991	0.991	0.992	0.997
Mg/(Mg+Fe)	0.902	0.898	0.899	0.900	0.899	0.901	0.898	0.900

PDR: Philibert-Duncumb-Reed ZAF, oxide stds, Heinrich 1966 macs PAPF-1 and Arm-1: $\Phi(\rho z)$ algorithms, oxide stds, Heinrich 1986 macs PAPF-2 and Arm-2: synthetic olivine stds, Heinrich 1986 macs PAPF-3 and Arm-3: synthetic olivine stds, FFAST macs Same k-ratios, n=4, CaO 0.09, Cr₂O₃ 0.06, MnO 0.14, NiO 0.37 (wt %) Olivine Formula: M²⁺₂SiO₄ [PFW 7/2004, PDR and PAPF algorithm errors corrected]

Effect of Tilting and Particle Effects

Inconel Spheres: Diameter ~ 30 um

Inconel Sphere EDS Spectra: Effect of Takeoff Angle

Inconel Sphere Low Energy EDS Region

WinXray: EDS Spectra at 30, 40, 50 degree TOA

Al K α Peak Intensity at -10° to +10° Tilt Relative to 40°

Calculated Tilt Effect on Al-Cr-Ni Alloy Composition

	Takeoff Angle	Al Kα Intensity	Al Wt %	Cr Kα Intensity	Cr Wt %	Ni Kα Intensity	Ni Wt %
	30	59.85	2.45	437.57	37.28	263.80	58.43
	35	66.52	2.73	441.18	37.58	265.79	58.87
Nominal	40	72.21	2.96	443.95	37.82	267.31	59.21
	45	77.04	3.16	446.13	38.01	268.49	59.47
	50	81.12	3.33	447.86	38.15	269.42	59.68

GMR Thin Film program: calculate emitted intensity at each takeoff angle.

(We don't want k-ratio relative to standard at each takeoff angle)

X-ray intensity relative to 40 degree value used to scale weight %

Al range 0.88 wt% / 20 degrees = 0.044 wt% per degree = 1.5% relative/deg.

Cr range 0.88 wt%, = 0.12% relative/degree

Ni range 1.25 wt%, = 0.063 wt% per degree = 0.11% relative/degree

Conclusion: 10 degree tilt error results in percent level analytical errors

Problem Systems

Problem Systems in EPMA: Analytical Elements in Problem Matrices

- Analytical Problems:
- X-ray peak overlaps
- High x-ray absorption
- Spatial issues, inhomogeneity
- Particle, thin film, etc.
- -----
- Perform proper measurement to obtain correct k-ratio
- Use standard as close to sample for high correction analysis
- Necessary to evaluate all correction algorithms and mass absorption coefficients do not blindly accept one pairing as the best

WDS Background Selection (Natural Peak Width) And High Order WDS Interferences

- Example AlCrNi alloy used in Lehigh Microscopy School lab
- WDS scan on pure Al necessary to establish full natural peak width
- People choose backgrounds too close to peak If background is not true on pure element, also not true on any sample
- Cr Kb IV reflection observed at Al Ka peak position on TAP

WDS Scan LIF: Al, Cr, Ni and NiCrAl Sample Note background intensity as function of Z

WDS Scan LIF: Al, Cr, Ni, and NiCrAl Sample Note background intensity as function of Z

WDS Scan TAP: Al, Cr, Ni, and NiCrAl Sample Note Cr K β IV-order interference on Al K α , Full Al peak width

WDS Scan: LiF Crystal 95IRV Green, 95IRW Blue, 95IRX Red

WDS Scan: LiF Crystal 95IRV Green, 95IRW Blue, 95IRX Red

WDS Scan: PET Crystal 95IRV Green, 95IRW Blue, 95 IRX Red

WDS Scan: PET Crystal Si K α limb and Hf M β Overlap on Rb L α

WDS Scan: PET Crystal Sr Lα Peaks, Rb Lβ family overlaps

WDS Scan: PET Crystal Th Mβ on U Mα, K Kα Peaks & Ovlp U Mβ

UO EPMA Workshop 2008
Elevated and Uncertain MAC Values for K, L, M Lines: Proximity to Absorption Edge of Matrix Element

K-Lines and absorber for K, L, M edge

Li	Be											B Be,S,Y	C B,Ar,Tc	N C,Ca,Ag	O N,V,Sn	F O,Mn,I	Ne F,Co,La
Na Ne,Zn,Nd	Mg Na,Ge,Gd											Al Mg,Se,Er	Si Al,Kr,Hf	P Si,Sr,Re	S P,Zr,Au	Cl S,Mo,Pb	Ar Cl,Ru,Rn
K Ar,Pd,Ac	Ca K,Cd,U	Sc Ca,Sn	Ti Sc,Sb	V Sc,Xe	Cr Ti,Ba	Mn V,Ce	Fe Cr,Nd	Co Mn,Sm	Ni Fe,Gd	Cu Co,Dy	Zn Ni,Er	Ga Cu,Lu	Ge Zn,Ta	As Ga,Re	Se Ge,Ir	Br As,Au	Kr As,Hg
Rb Se,Pb	Sr Br,Po	Y Kr,Rn	Zr Rb,Ra	Nb Sr,Th	Mo Y,U	Tc Fr	Ru ~Ac										

L-Lines and absorber for K, L, M edge

			Ti N,Sc,In	V N,Ti,Sn	Cr O,V,Sb	Mn O,Cr,I	Fe F,Mn,Xe	Co F,Fe,Ca	Ni F,Co,La	Cu Ne,Ni,Ce	Zn Ne,Cu,Nd	Ga Na,Zn,Pm	Ge Na,Ga,Eu	As Na,Ge,Tb	Se Mg,As,Dy	Br Mg,Se,Er	Kr Al,Br,Yb
Rb Al,Kr,Lu	Sr Si,Rb,Ta	Y P,Rb,W	Zr Si,Sr,Os	Nb P,Y,Ir	Mo P,Zr,Au	Tc P,Nb,Tl	Ru S,Mo,Pb	Rh S,Tc,Po	Pd Cl,Ru,At	Ag Cl,Ru,Rn	Cd Cl,Rh,Ra	In Ar,Pd,Ac	Sn Ar,Ag,Pa	Sb Ar,Cd,U	Te K,In,Np	I K,Sn,Np	Xe Ca,Sn
Cs Ca,Sb,	Ba Ca,Te		Hf Co,Dy	Та Со,Но	W Ni,Er	Re Ni,Tm	Os Ni,Tm	Ir Cu,Yb	Pt Cu,Lu	Au Zn,Hf	Hg Zn,Ta	Tl Zn,W	Pb Ga,Re	Bi Ga,Re	Po Ge,Os	At Ge,Ir	Rn Ge,Pt
Fr As,Au	Ra As,Hg			-		-						-			-		
		La Sc,I	Ce Sc,Xe	Pr Ti,Cs	Nd Ti,Cs	Pm Ti,Ba	Sm V,La	Eu V,Ce	Gd Cr,Pr	Tb Cr,Nd	Dy Cr,Pm	Ho Mn,Sm	Er Mn,Sm	Tm Fe,Eu	Yb Fe,Gd	Lu Fe,Tb]
		Ac As,Hg	Th Se,Tl	Pa Se,Pb	U Br,Bi	Np Br,Po	Pu Br,At		•	•	•	-	•	-	-		-

M-Lines and absorber for K, L, M edge

			Hf Al,Br,Lu	Ta Al,Kr,Lu	W Al,Kr,Hf	Re Si,Rb,Ta	Os Si,Rb,W	Ir Si,Sr,Re	Pt Si,Sr,Os	Au Si,Y,Ir	Hg P,Y,Pt	Tl P,Zr,Pt	Pb P,Zr,Au	Bi P,Nb,Hg	Po S,Nb,Tl	At S,Mo,Pb	Rn S,Mo,I
Fr S,Tc,Po	Ra Cl,Tc,At																
		La F,Co,Ba	Ce Ne,Ni,La	Pr Ne,Ni,Ce	Nd Ne,Cu,Pr	Pm Ne,Ni,Nd	Sm Na,Zn,Pm	Eu Na,Ga,Sm	Gd Na,Ga,Eu	Tb Na,Ge,Gd	Dy Na,Ge,Tb	Ho Mg,As,Dy	Er Mg,As,Ho	Tm Mg,Se,Er	Yb Mg,Se,Tm	Lu Al,Br,Yb	
		Ac Cl,Ru,Rn	Th Cl,Ru,Rn	Pa Cl,Rh,Fr	U Cl,Rh,Ra												

Example problem: Identification of Ir. Si., unknown

Mass Absorption Coefficients for Si Kα By Absorber Z, All MAC Data Sets Compared

Comparison of Si K α MACS Relative percent σ

Silicon Ka MAC at L-edge of Absorber

Silicon Ka MAC at M-edge of Absorber

Error Analysis Ta L α in TaSi₂ All algorithms and MAC sets (PAPF-FFAST = 1.0)

Error Histogram Ta Lα in TaSi2 Relative to PAP-FFAST Nominal K-ratios

Error Analysis Si K α in TaSi₂ All algorithms and MAC sets (PAPF-FFAST=1.0)

Calculated Compositions of TaSi2 Relative to PAP—FFAST Nominal K-ratios

PAPF with MAC	Wt% Si	Wt% Ta	Total
СМ	14.74	73.74	88.48
M30	15.64	74.02	89.66
(FFAST)	23.69	76.31	100
LM	24.87	76.52	101.39
MM	25.96	76.85	102.81

Conclusions

- Geological applications require multicomponent accuracy evaluation
- Use of K_{meas}/K_{calc} plot used for data analysis, WDS and EDS
- CMASTF standards provide instrument calibration data set
- Experimental K-ratio data set available for development and testing
- Identification of inconsistent compositions
- Accuracy of analysis in CMASTF system better than 2%, precision limited
- SDD quantitative analysis data highly competitive with WDS
- Excellent prospects for high speed SDD quantitative analysis in particle, mapping applications