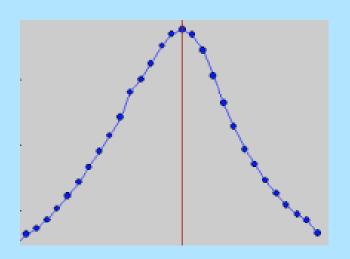


Al, Mg, Si and Na Ka Peak Shifts in Common Silicate and Oxide Minerals


A presentation for the Advanced Instrumental Techniques and Software Algorithms in EPMA Workshop (Eugene, OR, September 13, 2007)

John Fournelle

Eugene Cameron Electron Microprobe Lab Department of Geology & Geophysics University of Wisconsin Madison, Wisconsin

A veteran prober had problems with silicates ... we narrowed down the problem to issues related to peaks of standards and unknowns:

- How wide are the peak tops?
- Is there a problem with our peaking procedure?
- Are there chemical peak shifts?

We started with Si and Al K α ... and worked up to Mg and Na K α

Answers 1, 5-10 sin theta units 2, Yes 3, Yes

Peak Widths

Consider the Si K_{α} Peak

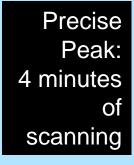
Normalized

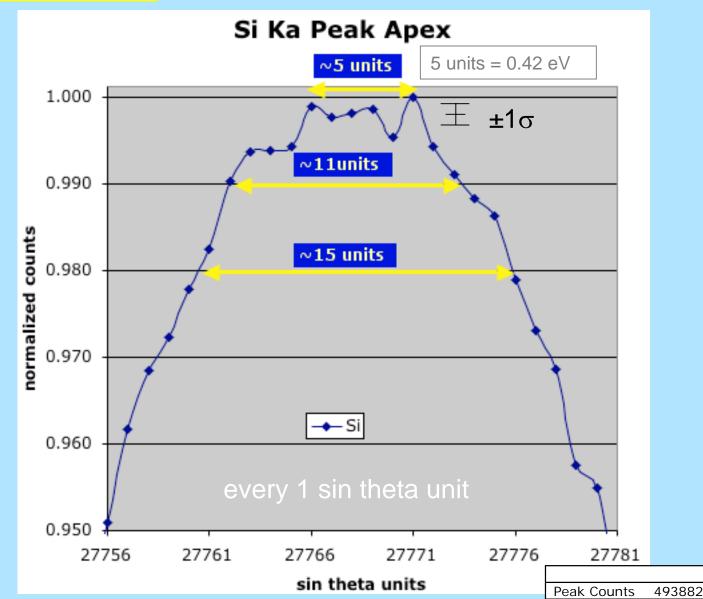
1.0000 0.0014

0.0028

0.0043

703


1406

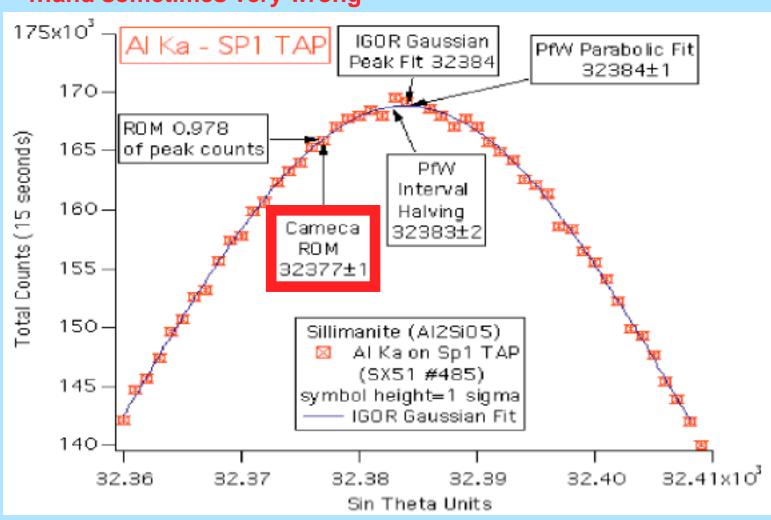

2108

1 sigma

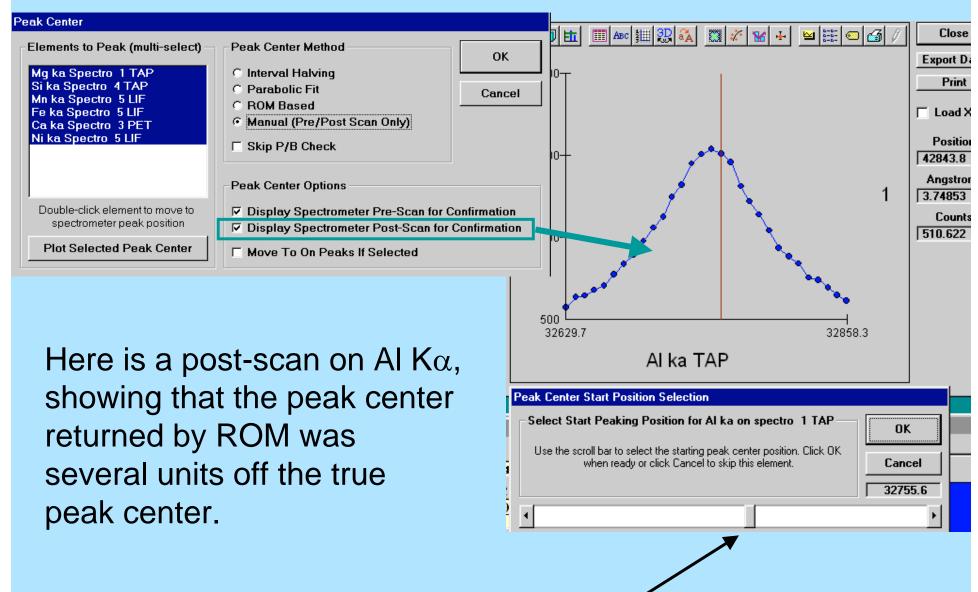
2 sigma

3 sigma

TAP, 15 kev, 20 nA, 10 sec/channel, Si metal


Conclusion 1

Si and Al K_α Peak Widths on TAP:


- Many peaks ~ 5 sin theta units wide
- For <u>correctly centered</u> peak position, > 2-3 sin theta unit shift will lose counts, and
 - For 5-6 units shift, at least 1% error
 - For 7-8 units shift, at least 2% error
 - And these errors would be <u>doubled</u> for oxide values (oxygen by stoichometry)

Results of Automated Al K_{α} Peaking Options

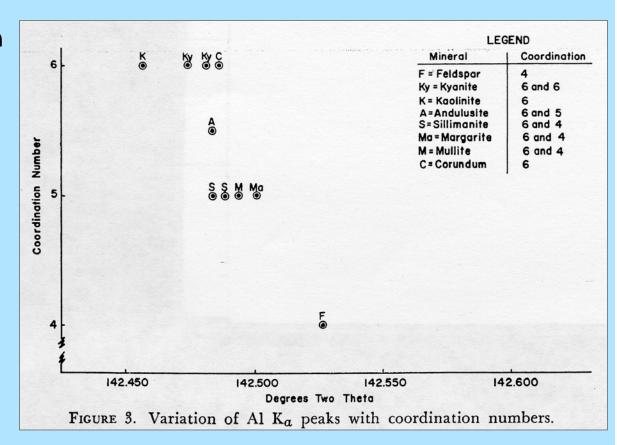
ROM very reproducible: 10 measurements, s.d. of 1.2, range 32374-8 ...and sometimes very wrong

We requested a modification of the peaking procedure in Probe for Windows ...

Operator now has final say over peaking

Chemical Peak Shifts

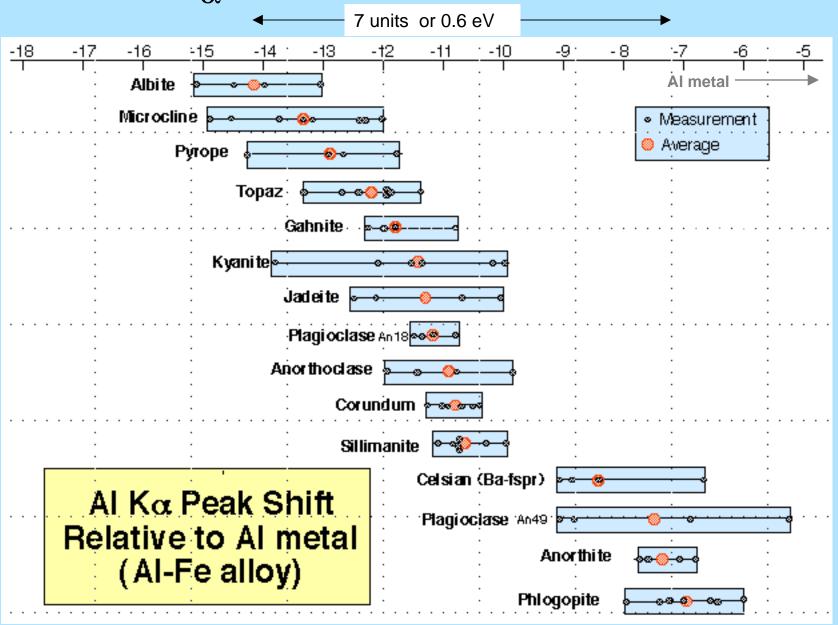
Have been recognized since the origins of x-ray spectroscopy in the 1920s, e.g., Cl and S Kβ peaks (M-L transitions: M shell electrons = valence electrons)

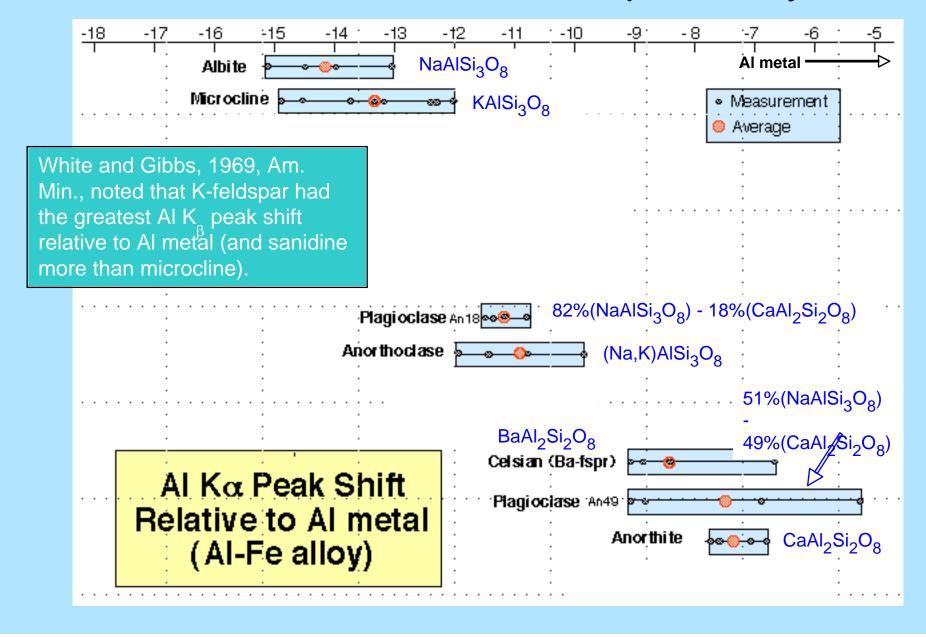

Al K_α Chemical Shifts

... have been recognized for ~50 years

White, McKinstry & Bates, 1959, Advan. X-ray Analysis

Al Ka Shift vs coordination relative to Al metal:


Feldspar (IV): -0.07; Sillimanite (IV+VI): -0.11; Kyanite (VI): -0.12


Also Day, 1963, Nature; Wardle and Brindley, 1971, American Mineralogist

But apparently never to this extent...

Al K_{α} Peak Shifts on UW SX51

Al K_α Peak Shifts - Feldspars Only

Al K_α Peak Shifts

	Al Ka Peak Shift Relative to Al-Fe Alloy							
Coord	Mineral	Sp1)Ave	Std Dev	n	Mineral (Sp4) Ave	Std Dev	Coord
4	Albite	-14.2	0.7	4	Albite	-18.0	0.7	4
4	Microcline	-13.3	1.0	8	Pyrope	-16.5	1.0	6
6	Pyrope	-12.9	0.9	4	Anorthoclase	-16.2	0.9	4
6	Topaz	-12.3	0.7	7	Alunite	-16.2	2.0	
6	Gahnite	-11.8	0.5	4	Microcline	-15.8	0.8	4
	Alunite	-11.6	1.1	4	Topaz	-15.1	0.5	6
6	Kyanite	-11.5	1.2	7	Plag - An18	-14.9	0.4	4
6	Jadeite	-11.3	1.0	4	Gahnite	-14.4	0.7	6
4	Plag - An18	-11.2	0.3	4	Jadeite	-13.9	0.5	6
4	Anorthoclase	-11.0	0.8	4	Kyanite	-13.8	0.7	6
6	Corundum	-10.8	0.3	7	Corundum	-13.4	0.5	6
6+4	Sillimanite	-10.7	0.3	7	Sillimanite	-12.8	1.0	6+4
4	Celsian	-8.5	1.0	4	Celsian	-11.7	1.1	4
4	Plag - An49	-7.5	1.6	4	An49	-10.3	1.2	4
4	Anorthite	-7.4	0.4	4	Anorthite	-9.9	1.0	4
4	F Phlogopite	-7.0	0.7	7	F Phlogopite	-9.8	1.4	4

Two independent measurements, very similar trends ... and not a simple function of Al coordination (e.g., consider the range in feldspars)

Al K_{α} Peak Shifts in Garnets Also

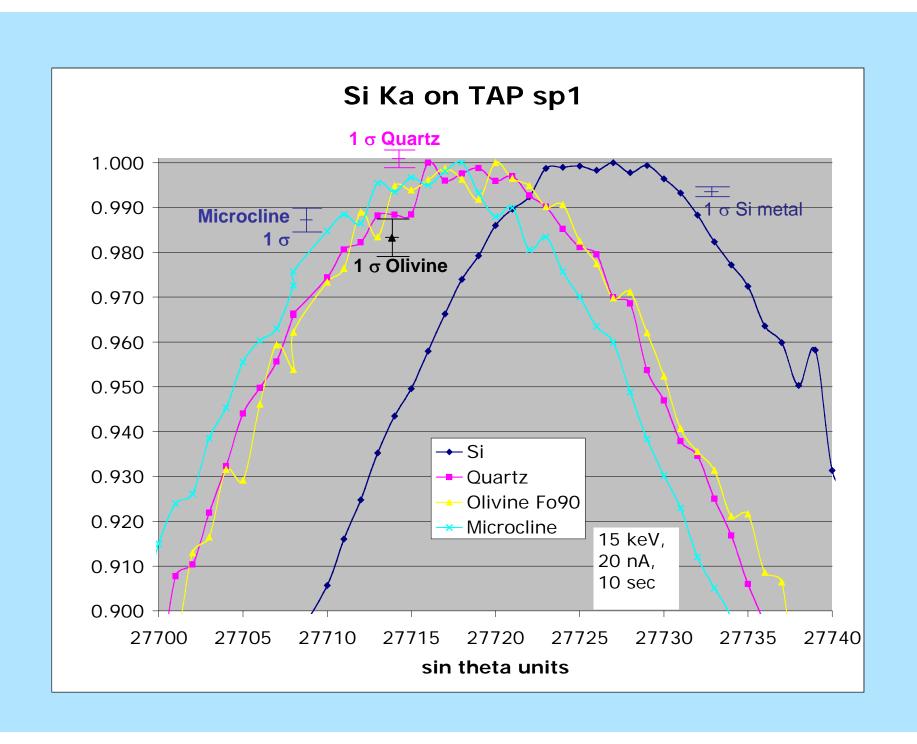
Garnet Type	Shift	Std Dev
YAG	-7.3	0.2
Almandine	-10.9	0.2
Spessartine	-11.5	0.2
Grossular	-12.2	0.1
Pyrope	-15.7	0.5

QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.

Si K_{β} , K_{α} Chemical Shifts: Historical

White, McKinstry and Roy, 1962, GSA Abstract

Measured major Si K_{β} shifts in SiO₂ relative to Si metal: Stishovite (IV): -0.010 Å; Quartz, cristobalite (VI): -0.015Å


though no Si K α Shift between IV and VI seen

Kaufman and Moll, 1966, Advances X-ray Analysis

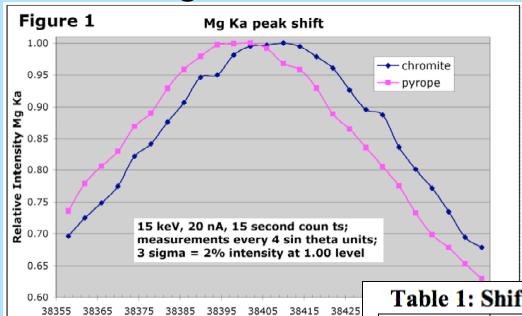
Examined Si $K\alpha_1$, $K\alpha_3$, $K\alpha_4$ and K_β for Si metal and 10 common silicate minerals; found differences between silicates

 $\frac{\text{for all K lines}}{\text{but NOT for}}$ $\frac{\text{K}\alpha_1}{\text{M}}$

Material				Li	ne			
Material	K_{α}	1	K_{lpha_3}	K_{lpha_3}			K_{eta}	
	λ	I_{\perp}	λ	I	λ	I	λ	I
Si	7.1262	1000	7.0803	66	7.0713	41	6.7506	28
SiO ₂	7.1244	1000	7.0765	52	7.0673	54	6.7666	30
Mg ₂ Si ₂ O ₆	7.1244	1000	7.0768	50	7.0680	53	6.7617	2
CaSiO ₃	7.1244	1000	7.0770	51	7.0680	53	6.7594	2:
KAlSi ₂ O ₆	7.1244	1000	7.0772	52	7.0680	56	6.7649	20
CaMgSi ₂ O ₆	7.1244	1000	7.0770	50	7.0682	53	6.7611	2.
KAlSi ₃ O ₈	7.1244	1000	7.0765	50	7.0678	54	6.7644	2:
NaAlSi ₃ O ₈	7.1244	1000	7.0766	51	7.0677	53	6.7640	24
CaAl ₂ Si ₂ O ₈	7.1244	1000	7.0763	49	7.0677	51	6.7614	2.
Fe ₂ SiO ₄	7.1244	1000	7.0773	50	7.0680	53	6.7630	23
(Na, K) (Al, Si) ₂ O ₄	7.1244	1000	7.0763	52	7.0675	56	6.7627	25

TAD. Ci Ka Dook Chift Dolative to Ci Motal								
TAP: Si Ka Peak Shift Relative to Si Metal								
mineral	Sp1)Ave	Std Dev	n	<u> </u>	mineral		Sp4) Ave	Std Dev
Microcline	-10.6	0.7	4	<u> </u>	Microclin	ne	-14.0	0.6
Quartz	-8.0	0.2	4		Quartz		-9.1	0.8
Enstatite	-6.8	8.0	4	[7	Topaz		-8.0	1.3
Anorthite	-6.8	0.5	4		Plagioclase An49		-8.0	1.4
Andradite	-6.8	0.6	4	\	Wollastonite		-7.9	0.8
Diopside	-6.8	0.8	4	/	Anorthite		-7.8	0.7
Topaz	-6.7	1.3	4	<u> </u>	Hornbler	nde	-7.7	0.6
Wollastonite	-6.5	0.5	4	l E	Enstatite		-7.6	0.6
Hornblende	-6.3	0.2	4	/	Andradit	e	-7.6	1.0
Olivine-Fo90	-5.8	0.9	4		Diopside		-7.2	0.9
Plagioclase An49	-5.6	1.2	4	(Olivine-F	-090	-6.8	0.7

Translating the above data as Ka shifts for <u>quartz</u>: Spectro1 = 0.5 ±0.1 eV; Spectro4 = 0.6±0.1 eV <u>Compare Above With:</u>


Si Ka shifts of Quartz by HRXFS (high resolution x-ray fluorescence spectroscopy)

- Okura et al (1990 Spectrochimica Acta) α -quartz 0.655 eV
- Liu et al (2004 Physical Review B) "SiO₂" 0.62 eV

A check

Implication: there is a 0.7 - 0.9 eV shift for <u>microcline</u> Si Ka relative to Si metal, -- And one should NOT peak Si on K-feldspar for plagioclase.

$Mg K_{\alpha}$ Peak Shifts:

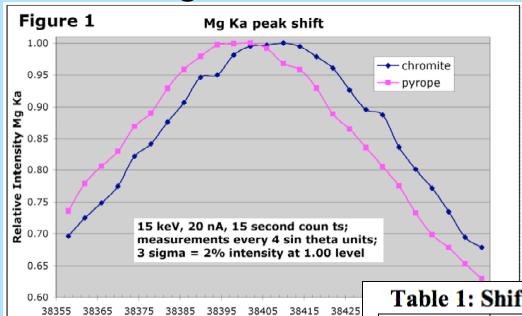

Sin Theta Units

Table 2:	Relative	Relative	
Mg Kα Peak	Counts on	Counts on	
	Pyrope	Chromite	
Pyrope Peak	1.000	0.968	
Chromite Peak	0.956	1.000	

Fable 1:	Shift in	Mg Ka
----------	----------	-------

Mineral	Type	Shift	Std
			Dev
Chromite	Spinel	-3.6	0.6
MgAl2O4	Spinel	-5.1	0.5
Kaersutite	Amphibole	-5.8	0.8
MgO	Oxide	-6.0	0.5
Enstatite	Pyroxene	-8.4	0.8
Diopside	Pyroxene	-8.7	0.7
Fo90	Olivine	-8.9	0.6
Pyrope	Garnet	-13.3	0.7

$Mg K_{\alpha}$ Peak Shifts:

Sin Theta Units

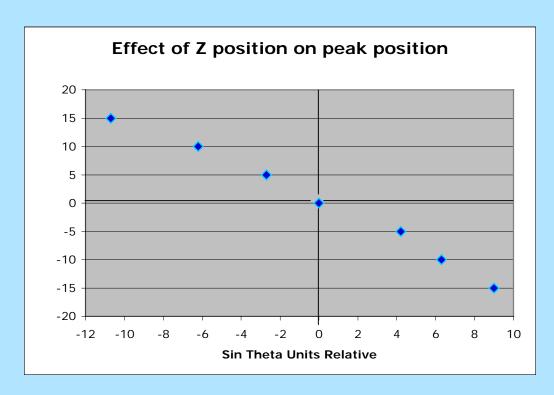
Table 2:	Relative	Relative	
Mg Kα Peak	Counts on	Counts on	
	Pyrope	Chromite	
Pyrope Peak	1.000	0.968	
Chromite Peak	0.956	1.000	

Fable 1:	Shift in	Mg Ka
----------	----------	-------

Mineral	Type	Shift	Std
			Dev
Chromite	Spinel	-3.6	0.6
MgAl2O4	Spinel	-5.1	0.5
Kaersutite	Amphibole	-5.8	0.8
MgO	Oxide	-6.0	0.5
Enstatite	Pyroxene	-8.4	0.8
Diopside	Pyroxene	-8.7	0.7
Fo90	Olivine	-8.9	0.6
Pyrope	Garnet	-13.3	0.7

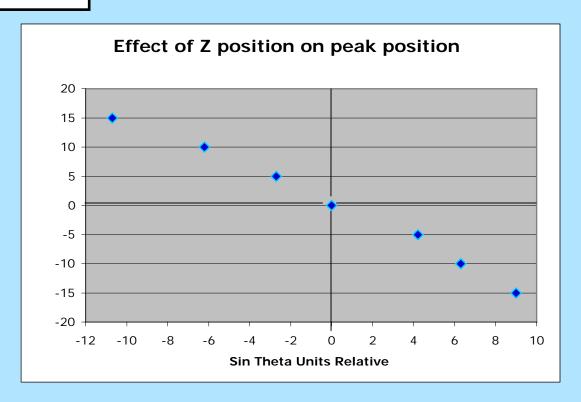
Na K_{α} Peak Shifts in Silicates:

Preliminary results:


- There are chemical peak shifts (albite vs jadeite, ~10 unit peak shift)
- Peaks are very wide (albite ~18 units wide)
- Other issues muddy the waters (element migration, lower counts -> poor statistics)

Conclusion 2

Si, Al and Mg K_{α} Peak Shifts:

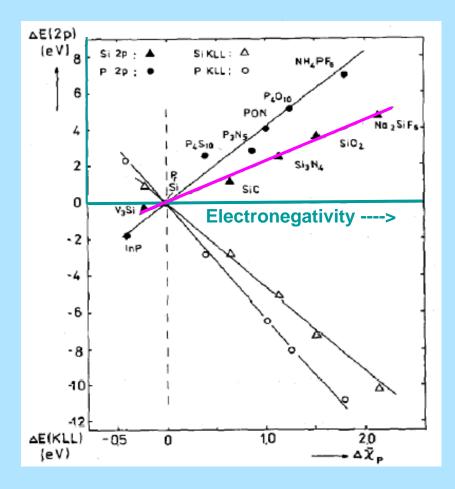

- Al: need pay special attention to which specific minerals are being analyzed, and use appropriate standard for peaking/counting (<u>feldspars especially!</u>)
- Si: special attention to K, Na feldspars
- Mg: MgO is not necessarily a good standard for all silicates; use like phases for standards

Al K_{α} Peak Positions (on TAP) are very sensitive to stage Z position

A misfocus of 5 microns in Z equals a peak shift of 3-4 sin theta units, not a trivial difference.

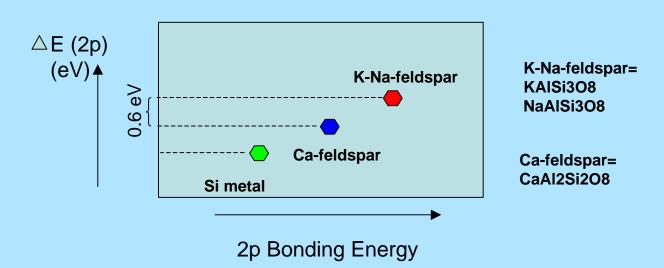
Conclusion 3

Well adjusted autofocus **critical** for multiple automated repeated measurements


On the basis for chemical shift in AI and Si $K\alpha$

Precision of EPMA peak measurements is much less than that possible using XPS and AES, and those fields' literature provide a basis for understanding the EPMA observations.

Streubel et al (1991 J. Electron Spectro & Related Phenom): Data on Si and P chemical shifts using XPS and AES


Figure 2 (top) plots relative Pauling Electronegativity vs relative binding energy of L shell (2p)

 $\Delta E(Ka) = \Delta E(1s) - \Delta E(2p)$ Ka peak shift =
Difference (vs Si metal) in K binding energy minus
Difference in L binding energy

Suggested reason for Al $K\alpha$ shifts in Ca vs K-Na feldspars

 $\Delta E(Ka) = \Delta E(1s) - \Delta E(2p)$ Ka peak shift = Difference (vs Si metal) in K binding energy minus Difference in L binding energy

Summary

- Accuracy in EPMA of AI, Mg and Si in silicate minerals requires attention to one of the first steps in calibration, <u>defining the peak</u> <u>positions</u>, because
- There are AI, Mg and Si $K\alpha$ chemical peak shifts between some "common" silicate minerals and oxides.
- Vertical stage drift can yield peak shifts.
- Automated peak search routines should be used with a critical eye.