Washington

UO EPMA Workshop 2010

Advanced Quantitative Electron-Probe Microanalysis

Paul Carpenter Earth and Planetary Sciences CB 1169 1 Brookings Drive Washington University St Louis, MO 63130 paulc@levee.wustl.edu

The Big Picture for EPMA Calibration, Measurement, Quantitation, Report

- Instrumental issues for EPMA: Column-spectrometer alignment Detector linearity and stability (flow, sealed) WDS deadtime calibration Spectrometer resolution, reproducibility New developments: SDD EDS mapping and quantitative analysis
- EPMA Standards: Proper selection of standards (sample vs. standard) Internal consistency of stds in your lab vs. international environment

Problem Systems:

Peak overlaps, high-order WDS interferences Analytical problems, high absorption correction Correction algorithms and mass absorption coefficient data sets

Solutions:

Interlaboratory collaboration, education Multiple KV and multiple spectrometer analysis of core std set Payoff – proof of internal std comps and empirical macs

UO EPMA Workshop 2010

Washington University, Saint Louis Earth and Planetary Sciences JEOL JXA-8200

Procedures for Quantitative EPMA, WDS Emphasis
Part I – Instrument Calibration and Measurement
 Electron microprobe calibration issues WDS and EDS spectrometer alignment, column alignment, (stage too) WDS deadtime characterization WDS pulse processing, gain/bias, PHA, P-10 EPMA Standards characterization and accuracy of analysis Internal consistency of standard compositions and measurements WDS wavelength scans and background measurement locations Full peak width, scans on stds and samples Net Web Instances Veb Ket Ket Ket Ket Ket Ket Ket Ket Ket Ket
Identification of neak and background interferences
 Analytical conditions, beam sensitive materials
New instrument, 25 year old std block with oxidized surface, why ???
Avoid blunders
Reliance on software defaults, automated procedures and unattended ops
Setup without WDS scans, ignorance of pulse processing
Precision vs. accuracy issues UO EPMA Workshop 2010

Calibration Issues for Electron-Probe Microanalysis

- Microprobe performance specifications are: Driven by capabilities and address problem solving for customers Capabilities are funded by purchases, user/vendor development Realistic specifications for WDS vs. EDS systems
- Instrument calibration during installation and testing Spectrometer alignment – to electron column and mutual agreement Detector linearity with count rate and deadtime issues Precision = reproducibility (mechanical, electronic) Accuracy = correct K-ratio measured
- Instrument calibration short vs. long term Consistent performance with time Accuracy in international interlaboratory environment
- Geological EPMA CMAS silicate standards used for acceptance testing (CIT, WU)

UO EPMA Workshop 2010

Software Tools for the Microprobe Analyst

- Interaction with experienced scientists and technicians, and thinking.
- Calczaf correction algorithms, mac sets, parameters Generated a-factors for compact correction algorithm, testing
- DTSA II, Casino, GMRfilm, (Penelope) scattering volume, spatial sampling, simulation of x-ray spectra
- Startwin (PFE) bias/gain scans, pha characterization, spectrometer alignment, spectrometer reproducibility, beam stability, etc.
- Probe for EPMA all quantitative EPMA Sample setups and subsets of master element list, customized Formula calculation, specified elements, etc.
 Multiple standards comparison, standards evaluation Beam sensitive materials analysis via TDI Multiple spectrometer measurement of (trace) elements QC with record-keeping of all peaking, PHA scans
- ProbeImage x-ray and quantitative compositional mapping

Deadtime Relations
Calculation of Deadtime Constant
$N = \frac{N_m}{(1 - N_m \tau)} \stackrel{\bullet}{\bullet} N = \text{true count rate, } N_m = \text{measured count rate with} \\ \text{deadtime losses } (N_m < N), \text{ and } \tau \text{ is the deadtime constant,} \\ \text{which ranges from 1 to several } \mu \text{sec for WDS counting} \\ \text{systems. It is necessary to know } N_m \text{ and } N \text{ to calculate } \tau. \\ \text{We assume the proportionality of } N \text{ to the probe current i} \\ \text{which ranges from 1 to the probe current i} \\ \text{We assume the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{We assume the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{Measure the proportionality of } N \text{ to the probe current i} \\ \text{Measure the propertional } N \text{ to the probe current i} \\ \text{Measure the propertional } N \text{ to the probe current i} \\ \text{Measure the propertional } N \text{ to the probe current i} \\ \text{Measure the propertional } N \text{ to the probe current i} \\ \text{Measure the probe current } N \text{ to the probe current i} \\ \text{Measure the probe current } N \text{ to the probe current i} \\ \text{Measure the probe current } N \text{ to the probe current } N \text{ to the probe current } \\ \text{Measure the probe current } N \text{ to the probe current } N \text{ to the probe current } \\ \text{Measure the probe current } N \text{ to the probe current } N \text{ to the probe current } \\ \text{Measure the probe current } N \text{ to the probe current } N \text{ to the probe current } N \text{ to the probe current } \\ \text{Measure the probe current } N \text{ to the probe current } N \text{ to the probe current } \\ \text{Measure the probe current } N \text{ to the probe current } N \text{ to the probe current } \\ \text{Measure the probe curent } N to th$
$\frac{N_{m}}{i} = c(1 - N_{m} \tau)$ is constant. This may not be true at low count rates. • $N_{m} / i =$ measured count rate in counts per second per nA, and c is the constant N / i Form: y = mx +b (N_{m} / i) is y, x is N_{m} , y-intercept b is constant c (= N / i).
$\tau = \frac{\left[1 - (N_m / i) / c\right]}{N_m} \cdot \frac{\text{Equivalent to } \tau = (1 - y / b) / x}{\text{Measure x-ray intensity at increasing probe current}} \\ \text{Use count rate } N_m \text{ and } N_m / i \text{ to evaluate the deadtime}} \\ \text{constant } \tau \text{ over a range of intensity values}$
UO EPMA Workshop 2010

Dead	ime C	alcula	tion fi	rom E	xcel S	pread	sheet		
nA	Abs Cur	Abs/Probe	Time	Cps (x)	Cps/nA (y	Fit All	Fit Last	DT us All	DT Last
2.00	1.63	0.82	100	4607.9	2302.57	2299.81		0.61	
5.00	4.05	0.81	80	11436.9	2287.20	2286.17		0.83	
10.01	8.10	0.81	80	22665.3	2264.44	2263.73		0.85	
20.05	16.25	0.81	60	44469.0	2217.95	2220.18		0.89	
25.00	20.29	0.81	60	54977.1	2199.08	2199.18	2197.08	0.87	0.83
29.98	24.34	0.81	30	65298.1	2177.91	2178.56	2177.00	0.87	0.84
35.02	28.54	0.81	30	75474.9	2155.07	2158.23	2157.20	0.88	0.86
40.05	32.53	0.81	30	85510.0	2134.97	2138.18	2137.67	0.88	0.86
49.99	40.74	0.81	30	105026.6	2101.04	2099.19	2099.70	0.86	0.84
69.98	57.25	0.82	30	141942.7	2028.45	2025.44	2027.88	0.86	0.84
Regressio	n Output:					Mean dea	dtime	0.86	0.84
All	Y intercep	ot	2309.01	Slope	-0.0020	Sigma		0.02	0.01
High CR	Y intercep	ot	2304.04	Slope	-0.0019	Regressio	n DT	0.87	0.84
Excel S from lea only da Ratio of	heet: X is ast square ta are con f absorbed	N _m and Y s fit to da npared wi d/probe cu	(is N _m /i. ta (Fit) u th averag urrent che	Deadtim sing Exce e values ecks cond	e evaluat el <i>linest</i> fu (Mean de uctivity.	ed from e unction. A adtime) a If linear a	each inten All data a and standa all data ag	sity (DT) nd high in ard deviat gree.	and ntensity ion.

CMASTF Silicate Standards Geological materials are multicomponent
 End-member stoichiometric silicate and oxide mineral standards Primary standards: MgO, Al₂O₃, SiO₂, CaSiO₃ (CaO 48.27, SiO₂ 51.73), TiO₂, and Fe₂O₃ Analyzed suite of stoichiometric standards, natural and synthetic materials: Second set of primary standards on different mounts Spinel MgAl₂O4, Enstatite MgSiO₃, Forsterite Mg₂SiO₄ Kyanite Al₂SiO₅ Fayalite Fe₂SiO₄ Well characterized natural mineral standards and glasses: Olivines (Mg,Fe)₂SiO₄ Diopside CaMgSi₂O₆, Anorthite CaAl₂Si₂O₈, Sphene CaTiSiO₅ Ilmenite FeTiO₃ Synthetic glasses in CMAS and CMASF system: Weill CMAS glasses, NBS K411, K412
UO EPMA Workshop 2010

CMASTF Standard Inventory: Natural & Synthetic Composition in Wt% Oxide

						FeO* or
Standard	MgO	Al2O3	SiO2	CaO	TiO2	Fe2O3
Alaska Anorthite		36.03	44.00	19.09		0.62
Boyd Olivine	51.63		40.85			7.17
Ilmen Mtns Ilmenite	0.31				45.70	46.54
K411 Glass	14.67	0.10	54.30	15.47		14.42
K412 Glass	19.33	9.27	45.35	15.25		9.96
Kyanite P236		62.91	37.09			
Natural Bridge Diopside	18.31	0.06	55.40	25.78	0.01	0.26
ORNL, RDS Fayalite	1		29.49			70.51
San Carlos Olivine	49.42		40.81			9.55
Shankland Forsterite	57.30		42.70			
Springwater Olivine	43.58		38.95			16.62
Taylor Kyanite	0.00	62.70	37.00			0.16
Taylor Olivine	50.78		41.15			7.62
Faylor Sphene		1.36	30.83	28.82	37.80	0.66
Faylor Spinel	28.34	71.66				
Weill A	11.05	16.07	49.72	23.15		
Weill B	13.99	16.05	48.99	20.97		
Weill D	17.97	20.96	45.07	16.00		
Weill E*	6.00	8.99	79.97	5.04		
Weill Enstatite Glass	40.15	0.00	59.85			
Weill F	10.07	30.93	52.06	6.94		
Weill G	32.69	3.31	61.12	2.89		
Weill H	5.22	41.90	30.91	21.97		
Weill I	19.03	2.01	52.95	26.01		
Weill J	1.01	19.02	42.98	36.99		

WDS	Spec 1	Spec 2	Spec 3	Spec 4	Spec 5
Mg TAP	0.9997	0.9971			
Al TAP	0.9950	0.9946			
Si TAP	0.9981	0.9955			
Si PET	0.9855		0.9865	0.9837	0.9880
Ca PET	1.0013		1.0064	1.0035	1.0101
Ca LIF			0.9908	0.9948	0.9989
Ti PET	1.0000		1.0059	1.0044	1.0115
Ti LIF			0.9919	0.9949	1.0084
Fe LIF			0.9962	1.0051	1.0131

WDC	Smaa 1	Sman 2	Sman 2	Smaa 4	Smaa 5
wD5	Spec 1	Spec 2	spec 5	Spec 4	spec 3
Mg TAP	0.65	1.30			
Al TAP	1.06	1.22			
Si TAP	0.74	0.64			
Si PET	0.71		0.71	0.75	0.70
Ca PET	0.79		0.73	0.70	0.74
Ca LIF			0.74	0.92	0.69
Ti PET	2.27		1.44	0.98	1.54
Ti LIF			0.61	1.15	1.14
Fe L IF			1 75	1 27	1.26

Washington University JEOL JXA-8200 SDD Quantitative Analysis Data

- SDD great for mapping, what about quantitative analysis?
- SDD EDS data acquired at 120s, 60s, and 3s acquisitions at T3
- Standards used: MgO, Al₂O₃, SiO₂, CaSiO₃ (CaO 48.27, SiO₂ 51.73), TiO₂, and Fe₂O₃
- Linear least-squares peak deconvolution (JEOL software)
- \blacksquare Extracted raw K-ratios processed using Armstrong $\Phi(\rho z)$ and FFAST macs for comparison with WDS data

120s Data	Mg	Al	Si	Ca	Ti	Fe
Average	1.0122	1.0064	1.0017	0.9926	1.0021	1.0108
σ	0.0063	0.0122	0.0078	0.0066	0.0106	0.0140
Relative %	0.62	1.21	0.78	0.67	1.06	1.38
60s Data Average	1.0058	1.0022	0.9969	0.9895	0.9975	1.0083
Relative %	1.17	1.61	0.69	0.67	1.51	1.12
3s Data						
werage	1.0061	1.0135	1.0001	0.9933	0.9947	1.0123
σ	0.0162	0.0263	0.0104	0.0213	0.0118	0.0211
Relative %	1.61	2.59	1.04	2.14	1.19	2.09

EPM	A of Sar	n Carlo	os Oliv	ine				
Corre	ection M	ethod	and ma	acs @	20 KV	, 40 TC)A	
Oxide	Wet Chem	PDR	PAPF-1	Arm-1	PAPF-2	Arm-2	PAPF-3	Arm-3
		Ox / H66	Ox / H86	Ox / H86	Ol / H86	Ol/H86	Ol/FF	Ol / FF
MgO	49.42	50.10	50.04	49.82	49.44	49.44	48.98	49.00
SiO ₂	40.81	40.74	40.66	40.07	40.56	40.58	40.34	40.69
FeO*	9.55	10.13	10.08	9.89	9.89	9.89	9.89	9.74
Total	100.29	101.66	101.47	100.47	100.60	100.60	99.90	100.12
ΣM^{2+}	2.005	2.025	2.025	2.034	2.016	2.016	2.014	2.003
Si	0.997	0.986	0.986	0.982	0.991	0.991	0.992	0.997
Mg/(Mg+Fe)	0.902	0.898	0.899	0.900	0.899	0.901	0.898	0.900
PDR: Philit PAPF-1 and PAPF-2 and PAPF-3 and Same k-rati Olivine For	eert-Duncumb-R l Arm-1: $Φ(ρz)$; l Arm-2: synthet l Arm-3: synthet l Arm-3: synthet os, n=4, CaO 0. mula: M ²⁺ ₂ SiO ₄	eed ZAF, ox algorithms, c ic olivine sta ic olivine sta 09 , Cr_2O_3 0.0	ide standards xide standard undards, Hein undards, FFA 06, MnO 0.14	s, Heinrich 1 ds, Heinrich urich 1986 m ST macs 4, NiO 0.37 (966 macs 1986 macs acs wt %)			
							UO EPMA	Workshop 2010

		K-Lir	nes and	absorbe	er for K	, L, M	edge										
	Be	1										B Be,S,Y	C B,Ar,Tc	N C,Ca,Ag	O N,V,Sn	F O,Mn,I	Ne F,Co,La
Zn Nd	Mg Na Ca Gd											Al Ma Sa Er	Si Al Kr Hf	P Si Sr Pa	S P 7r Au	CI S Mo Ph	Ar CI Pu P
Pd,Ac	Ca K,Cd,U	Sc Ca,Sn	Ti Sc,Sb	V Sc,Xe	Cr Ti,Ba	Mn V,Ce	Fe Cr,Nd	Co Mn,Sm	Ni Fe,Gd	Cu Co,Dy	Zn Ni,Er	Ga Cu,Lu	Ge Zn,Ta	As Ga,Re	Se Ge,Ir	Br As,Au	Kr As,Hg
Ph	Sr Br Po	Y Kr Rn	Zr Rh Ra	Nb Sr Th	Mo X U	Tc Fr	Ru										
		L-Lin	Ti ni	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Sr	Y	N,Sc,In Zr	N,Ti,Sn Nb	O,V,Sb Mo	O,Cr,J Tc	F,Mn,Xe Ru	F,Fe,Ca Rh	F,Co,La Pd	Ne,Ni,Ce Ag	Ne,Cu,Nd Cd	Na,Zn,Pm In	Na,Ga,Eu Sn	Na,Ge,Tb Sb	Mg,As,Dy Te	Mg,Se,Er I	Al,Br,Yb Xe
Kr,Lu	Si,Rb,Ta Ba	P,Rb,W	Si,Sr,Os Hf	P,Y,Ir Ta	P,Zr,Au W	P,Nb,TI Re	S,Mo,Pb Os	S,Tc,Po Ir	Cl,Ru,At Pt	CI,Ru,Rn Au	Cl,Rh,Ra Hg	Ar,Pd,Ac Tl	Ar,Ag,Pa Pb	Ar,Cd,U Bi	K,In,Np Po	K,Sn,Np At	Ca,Sn Rn
,Sb,	Ca,Te		Co,Dy	Co,Ho	Ni,Er	Ni,Tm	Ni,Tm	Cu,Yb	Cu,Lu	Zn,Hf	Zn,Ta	Zn,W	Ga,Re	Ga,Re	Ge,Os	Ge,lr	Ge,Pt
,Au	As,Hg																_
		La Sc,I	Ce Sc,Xe	Pr Ti,Cs	Nd Ti,Cs	Pm Ti,Ba	Sm V,La	Eu V,Ce	Gd Cr,Pr	Tb Cr,Nd	Dy Cr,Pm	Ho Mn,Sm	Er Mn,Sm	Tm Fe,Eu	Yb Fe,Gd	Lu Fe,Tb	
		Ac As.Hg	Th Sc.Tl	Pa Se.Pb	U Br.Bi	Np Br.Po	Pu Br.At		1		1						-
		M.Lin	es and	absorba	r for K	I Me	dae	_									
		WI-LIII	Hf	Ta	w W	Re Re	luge Os	lr	Pt	Au	Hg	п	РЬ	Bi	Po	At	Rn
	R-		Al,Br,Lu	Al,Kr,Lu	Al,Kr,Hf	Si,Rb,Ta	Si,Rb,W	Si,Sr,Re	Si,Sr,Os	Si,Y,Ir	P,Y,Pt	P,Zr,Pt	P,Zr,Au	P,Nb,Hg	S,Nb,Tl	S,Mo,Pb	S,Mo,Pb
"Po	Ka Cl,Tc,At																
		La F,Co,Ba	Ce Ne,Ni,La	Pr Ne,Ni,Ce	Nd Ne,Cu,Pr	Pm Ne,Ni,Nd	Sm Na,Zn,Pm	Eu Na,Ga,Sm	Gd Na,Ga,Eu	Tb Na,Ge,Gd	Dy Na,Ge,Tb	Ho Mg,As,Dy	Er Mg,As,Ho	Tm Mg,Se,Er	Yb Mg,Se,Tm	Lu Al,Br,Yb	
		Ac	Th	Pa	U												

Erro	r An	alys	is S	si K	αi	n Ta	aSi	2								
Alla	algori	ithm	is a	nd]	MA	C s	sets	(P.	AP	F-F	FA	ST	=1	.0)		
8 -	Dram Variat	atic d ion o	emo f Φ(β	nstrat Dz) m	tion of the second s	of ch s and	oice 1 4 n	of M nac c	IAC lata s	data sets	set:					
7 -	Φ(pz) N	fodels	nemu = 1.0	Keed					Φ	(pz) N	fodels					
6 5 5 1 0	00	30 McMaster	D0 PAPF-FFAST	70 - ZAF	0	[0]	30 -	20 -	50	90	50 - citzmu	30	00 ZAF	20 -	10 -	
	0.7	0.93	1.0(1.0	1.1,	1.2	1.2	1.3	1.4	1.4	1.5	1.6	1.7(1.7	1.8-	
						K	(exp	Kcorr						UO EPM	IA Work	shop 2010

Calculated C Relative to P	ative to PAP—FFAST Nominal K-ratios										
PAF with N	PF IAC	Wt% Si	Wt% Ta	Total							
CM	1	14.74	73.74	88.48							
М3	0	15.64	74.02	89.66							
(FFAS	ST)	23.69	76.31	100							
LN	1	24.87	76.52	101.39							
MN	1	25.96	76.85	102.81							

EPMA Standards

The Good, the Bad and the Ugly The Good, the Bad and the Ugly (Italian: *Il buono, il brutto, il cattivo*) 1966 Italian spaghetti western directed by Sergio Leone Clint Eastwood as Blondie, the Good (confident bounty hunter) Lee Van Cleef as Angel Eyes, the Bad (ruthless sociopathic killer) Eli Wallach as Tuco, the Ugly (oafish bandit and liar) Third film in the Dollars trilogy A Fistful of Dollars (1964), For a Few Dollars More (1965) Plot: three gunslingers compete to find a fortune in buried Confederate gold amid the violent chaos of gunfights, hangings, Civil War battles, and prison camps There are (similar?) challenges of using microanalysis standards that are Good, Bad, and just plain Ugly

EPMA Standards: Desirable Attributes EPMA standards should be well characterized Bulk and microchemical analysis of distribution material XRF, ICP-MS, INAA, Classical wet chemistry, etc. Supplemental to EPMA analysis Traceable Homogeneous on micron scale Minimal variation intra-grain and grain-to-grain Quantitative representation of homogeneity Stable under electron beam bombardment and non-reactive with air Similar in composition to samples being analyzed Amenable to mounting and polishing Relatively large grains for use (several hundred microns minimum) Widely available and in sufficient quantity to international community Inexpensive for purchase

EPMA Standards: Emphasis on Mineral and Glass Multielement Standards

- Pure element metal standards Minimal uncertainty in composition, typically assumed pure Useful for wide range of samples, EDS calibration Caution: Segregations at grain boundaries, oxidation
 End-member oxides, compounds, and minerals
- End-member oxides, compounds, and minerals Assumed composition
 Al₂SiO₅, Mg₂SiO₄, etc., need WDS scans for minor elements Caution: Mg(OH)₂ on MgO, SiO₂ beam damage, etc.
 Stoichiometry is powerful constraint on composition
- Intermediate Composition Minerals, Glasses Kakanui Hornblende, K-411 glass, Corning 95-series trace glasses Minerals have stoichiometric constraint, glasses do not Minerals may have homogeneity issues, glasses may not

M&M 2008 EPMA Standards

M&M 2008 EPMA Standards

EPMA Standards: Il buono, the Good

 Eugene Jarosewich – Smithsonian microbeam standards: Natural and synthetic minerals and glasses
 Classical wet chemistry for primary analytical data (published values)
 EPMA used for intra-grain and grain-to-grain variation
 Sigma ratio: (actual sd / counting sd) data for quantitative homogeneity
 Sigma of all grains, measure of homogeneity
 Sigma of worst grain, indication of other material in separate?
 Significant amount of available material
 Widely distributed and routinely used
 Free for the asking
 NIST Standard Reference Materials
 Synthetic glasses (K-411, K-412, 61X-series, others)
 CuAu and AgAu alloys
 Certified values from extensive chemical and homogeneity analysis

M&M 2008 EPMA Standards

EPMA Standards: Il brutto, the Bad Multielement standards we use fit into this category, in my opinion Widely distributed Taylor standards uncertain pedigree Presumably EPMA analyses Zircon contains inclusions, undocumented homogeneity Many mineral standards characterized by EPMA only Few analytical details (standards, kV, instrument, correction algorithm) Chemistry only reported, no k-ratios

- Informally distributed material is assumed to be that of analysis Madagascar orthoclase (Fe, Ba differ)
- Material contains other elements and/or inclusions Boatner REE phosphates, must use portion with lowest Pb from flux
- The upside: Most of these standards could be analyzed to better their characterization

M&M 2008 EPMA Standards

Substrate reduction, oxide layer increase: k-ratio ~0.001-.003 per nm High Z oxides: Layer effect greater per unit thickness vs. low Z oxides Crossover point: $UO_2/U \sim 200$ nm, $Fe_2O_3/Fe \sim 320$ nm $Al_2O_3/Al \sim 520$ nm At thickness > crossover, oxide layer dominates k-ratio measurement

Basalt Glass Indian Ocean USNM 113716:

Olivine Standards: Mg-rich (Mg,Fe)₂SiO₄ Standard Nat./Syn. Minor/Trace Els Shankland forsterite Fo100 Synthetic Fe? Boyd olivine Fo₀₃ Natural Mn. Co. Ni. Zn? LLNL "Fo85" (Fo₀₃) Synthetic <none> San Carlos olivine Foon Natural Na?, Mg, Al, Ca, Ti?, Cr, Mn, Co, Ni Fujisawa sintered Fo₉₀ Synthetic Al. Ca. Mn. Zn LLNL "Fo80" (Fo85) Synthetic Al, Ca, Cr, Mn, Co?, Ni? Springwater olivine Fo₈₂ Natural Ca, Cr, Mn LLNL "Fo67" (Fo70) Synthetic <none> Shankland from ORNL LLNL olivines from George Rossman, Boyd and Fujisawa from Caltech San Carlos and Springwater olivine from Smithsonian UO EPMA Workshop 2010

Standard	Nat./Syn.	Minor/Trace Els.
Mn-olivine GRR-392	Synthetic	Fe
Mn-olivine RDS P-1087	Synthetic	Mg, Ca, Fe
Fayalite GRR-391	Synthetic	Mn
Fayalite RDS P-1086	Synthetic	Mg, Cr, Mn
Rockport Fayalite	Natural	Mg, Ca, Cr, Mn, Zn
Fayalite ORNL	Synthetic	Al?, Ca?, Cr
Ni-olivine P-877	Synthetic	Cr?, Fe, Co

Rockport Fayalite from Smithsonian

UO EPMA Workshop 2010

	RF is widely used as primary Fe standard But Mg and Zn present, not in wet chemistry analysis [Low level oxides suspected to be variable not reported in wc analysi
•	Is ferric iron present? – apparently not: Wet Chemistry: Fe_2O_3 1.32, FeO 66.36 %, Tot: 99.18 Dyar XANES: RF iron is completely reduced.
	Grunerite in separate: $Fe_7^{2+}Si_8O_{22}(OH)_2$
	Magnetite at locality, in separate $(Fe_2^{3+}Fe^{2+}O_4)$??
	Analysts should use EPMA analysis when using RF as primary standard
	UO EPMA Wo

Rockport Fa	ayalite						
Complete a	nalysis	neede	d for d	quantit	tative	correc	tion
Wet chem	ELEMENT	K-VALUE	ELEMWT%	OXIDWT%	ATOMIC	§ FORMULA	KILOVOL
	Si ka	.10211	13.659	29.221	14.299	1.001	15.0
missing elements	Fe ka	.47949	52.508	67.551	27.644	1.935	15.0
	Ti ka	.00024	.024	.040	.015	.001	15.0
	Mn ka	.01487	1.657	2.140	.887	.062	15.0
	0		•	31.104	.000	57.156	4.000
	TOTAL:			98.952	98.952	100.000	6.998
Wet chem plus							
EPMA data	ELEMENT	K-VALUE	ELEMWT%	OXIDWT%	ATOMIC	FORMULA	KILOVOL
Di mi i dada	Si ka	.10195	13.659	29.221	14.214	.995	15.0
	Fe ka	.47983	52.508	67.551	27.480	1.924	15.0
	Ti ka	.00024	.024	.040	.015	.001	15.0
	Mn ka	.01488	1.657	2.140	.882	.062	15.0
	Mg ka	.00014	.028	.046	.033	.002	15.0
	Ca ka	.00032	.032	.045	.023	.002	15.0
	Cr ka	.00045	.040	.059	.023	.002	15.0
	Ni ka	.00005	.006	.007	.003	.000	15.0
	Zn ka	.00394	.462	.575	.207	.014	15.0
	0		I	31.269	.000	57.120	4.000
	TOTAL:			99.684	99.684	100.000	7.003
						Ma	&M 2008 EPMA Standar

Oxide	Rockport Wet Chemistry	Rockport EPMA	RDS P-1086 EPMA	GRR391 EPMA**
MgO	Not reported	0.046	0.385	0
SiO ₂	29.22	29.99	30.04	(29.49)
CaO		0.045	0	0.004
Cr ₂ O ₃		0.059	0	0.010
MnO	2.14	2.13	0.092	0.212
FeO*	67.55	67.62	69.61	(70.34)
NiO		0.007	0.012	0.011
ZnO	Not reported	0.575	0.006	0.007
Total	99.18	100.48	100.16	(100.04)
ΣM^{2+}	1.999	1.982	1.979	1.999
Si	1.001	1.009	1.010	1.000

٦

Olivine	Standard	Analysis	σ wt%	Si cations	G	ΣM^{2+}	G
Group	Туре	Total	0, we //	1 ideal	Ŭ	2 ideal	Ū
Olivines	Oxide	101.14	0.42	0.989	0.004	2.023	0.007
	Syn. Olivine	100.22	0.37	0.994	0.003	2.012	0.006
Fayalites	Oxide	100.93	0.20	0.990	0.001	2.022	0.001
	Syn. Olivine	100.34	0.23	1.010	0.001	1.981	0.003
Mn,Ni	Oxide	99.32	0.33	0.991	0.003	2.018	0.006
Olivines	Syn. Olivine	100.07	0.30	1.002	0.003	1.995	0.005

Averages of total and cation stoichiometry for all olivines from test data set. For olivines, Mg/(Mg+Fe) = 0.860 ± 0.080 (ox) vs. 0.861 ± 0.079 (oliv). Identical k-ratios corrected using PAP full $\Phi(\rho z)$ and Heinrich 1986 macs, relative to oxide vs. synthetic olivine standards. Olivine Formula: M²⁺₂SiO₄

EF	² MA using synthetic olivine standards better than oxide standards: Superior analysis total, Si cation ~1.0, and $\Sigma M^{2+} \sim 2.0$
Im	provement in EPMA accuracy for olivine using Armstrong $\Phi(\rho z)$ coupled with FFAST mac data set.
	sing oxide standards we observe: Overcorrection of Mg and Fe in olivine across Fo-Fa binary Undercorrection of Si in low-Mg olivine (Fayalite, Mn-ol, and Ni-ol) Marginal underestimation of Mg/(Mg+Fe).
Th	ese relationships extend to all MgFe silicates relative to composition.
	pha-factor analysis of systematic errors in Fo-Fa system: EPMA and wet chemistry of natural olivines are not internally consistent. Worst: Boyd Forsterite Mg and Fe not consistent (Caltech standard) Best: Springwater Mg,Fe, and Mg in San Carlos (Fe in SC less so)

Conclusions
Quantitative EPMA emphasizes Measurement issues and instrumental calibration Use of good microanalysis standards
 Attention to details of correction algorithms and data sets Experimental approach which confirms all is well: Use of K_{meas}/K_{calc} plot used for data analysis, WDS and EDS CMASTF standards provide instrument calibration data set Identification of inconsistent compositions
Accuracy of analysis in CMASTF system better than 2%, precision limited SDD quantitative analysis data highly competitive with WDS
Always think: Calibration, measurement, quantitation, evaluation, report and discuss
UO EPMA Workshop 2010