Spatial Resolution and Trace Element Sensitivity

Analytical optimization...

Precision

Acquisition of as many counts as possible Want ability to prioritize efficiency in some cases

> Unlimited time? Unlimited current? Unlimited overvoltage?

Spatial Resolution

Electron scattering controls everything? Maybe beam size makes a difference in certain circumstances Sufficient voltage = addressing excitation potentials High Z phases?

What is the realized beam diameter at high current and sufficient voltage?

Determine the voltage you need...

		Element	Shell	Electron binding energy (keV)	E ₀ at U _{opt} ¹ (keV)	Characteristic line	Emission energy (keV)
		Pb	MV (3d ^{5/2})	2.484	4.97 – 7.45	Μα1	2.3455
0.45			MIV (3d ^{3/2})	2.586	5.17 – 7.76	Μβ	2.4427
0.40	• •		LIII (2p ^{1/2})	13.035	26.07 - 39.11	Lα1	10.5515
0.30 0.25 0.20 0.16	 • • 	Th	MV (3d ^{5/2})	3.332	6.66 – 10.00	Μα	2.9961
	Path length-normalized PbNe		LIII (2p ^{1/2})	16.300	32.6 - 48.9	L α1	12.6520
	intensity as a function of secolorating potential	U	MV (3d ^{5/2})	3.552	7.10 – 10.66	Μα1	3.1708
0.10	-		MIV (3d ^{3/2})	3.728	7.46 – 11.18	Μβ	3.3367
2 0.00 0.00			LIII (2p ^{3/2})	17.166	34.33 - 51.50	Lα1	13.6147
	0 8 10 18 20 28 E. (keV)	80 P	K (1s)	2.146	4.29 - 6.44	Κα1	2.0137
		La	LIII (2p ^{3/2})	5.483	10.97 – 16.45	Lα1	4.65097
						Lβ2	5.3835
			LII (2p ^{1/2})	5.891	11.78 – 17.67	Lβ1	5.0421
		Ce	LIII (2p ^{3/2})	5.723	11.45 – 17.17	Lα1	4.8402
						Lβ2	5.6134
			LII (2p ^{1/2})	6.164	12.33 – 18.49	Lβ1	5.2622
		Nd	LIII (2p ^{3/2})	6.208	12.42 – 18.62	Lα1	5.2304
			(1/2) (1/2)	6 722	12 44 - 20 17	LD2	5.0894
		NI 2	$LII (2r^{-7})$	0.722	13.44 - 20.17	LDI	3.7210
		YD ²	LIII (2p ^{3/2})	8.944	17.89 – 26.83		7.4156
			$ (2n^{1/2}) $	9.978	19.96 – 29 <u>.93</u>	LB2	8.7588
					23130 23133	<u></u>	011010

Quantitative analysis of complex accessory phases

Special considerations Analytical spatial resolution Trace element analysis – background measurement

Heavy elements – many transitions, overlaps, background measurement High Z

Analytical spatial resolution...

Labradorite (Z = 11)

Monazite (Z = 38)

Electron trajectory modeling - Casino

$$D_{AR} = (D_{beam}^2 + D_{scattering}^2)^{1/2}$$

Improvements in electron optics

Purpose: Large, stable current in small beam

Throughout range of voltage and current

Particular attention to lower voltage, high current beam quality

Testing theory against real monazite...

Savitsky – Golay noise filter...

Evaluate 2nd derivative...

Realized analytical spatial resolution for Th ...

—50.μm Th Ma 15.kV

W standard column X-Ray Mapping

LaB₆ optimized column X-Ray Mapping

Putting it together: High spatial resolution geochronology...nanogeochronology

Monazite – Boothia Peninsula, northern Canada R. Berman, GSC

